43 research outputs found

    separation and segmentation of the hepatic vasculature in CT images

    Get PDF

    High Resolution Maps of the Vasculature of An Entire Organ

    Get PDF
    The structure of vascular networks represents a great, unsolved problem in anatomy. Network geometry and topology differ dramatically from left to right and person to person as evidenced by the superficial venation of the hands and the vasculature of the retinae. Mathematically, we may state that there is no conserved topology in vascular networks. Efficiency demands that these networks be regular on a statistical level and perhaps optimal. We have taken the first steps towards elucidating the principles underlying vascular organization, creating the rst map of the hierarchical vasculature (above the capillaries) of an entire organ. Using serial blockface microscopy and fluorescence imaging, we are able to identify vasculature at 5 ฮผm resolution. We have designed image analysis software to segment, align, and skeletonize the resulting data, yielding a map of the individual vessels. We transformed these data into a mathematical graph, allowing computationally efficient storage and the calculation of geometric and topological statistics for the network. Our data revealed a complexity of structure unexpected by theory. We observe loops at all scales that complicate the assignment of hierarchy within the network and the existence of set length scales, implying a distinctly non-fractal structure of components within

    Fast Elastic Registration of Soft Tissues under Large Deformations

    Get PDF
    International audienceA fast and accurate fusion of intra-operative images with a pre-operative data is a key component of computer-aided interventions which aim at improving the outcomes of the intervention while reducing the patient's discomfort. In this paper, we focus on the problematic of the intra-operative navigation during abdominal surgery, which requires an accurate registration of tissues undergoing large deformations. Such a scenario occurs in the case of partial hepatectomy: to facilitate the access to the pathology, e.g. a tumor located in the posterior part of the right lobe, the surgery is performed on a patient in lateral position. Due to the change in patient's position, the resection plan based on the pre-operative CT scan acquired in the supine position must be updated to account for the deformations. We suppose that an imaging modality, such as the cone-beam CT, provides the information about the intra-operative shape of an organ, however, due to the reduced radiation dose and contrast, the actual locations of the internal structures necessary to update the planning are not available. To this end, we propose a method allowing for fast registration of the pre-operative data represented by a detailed 3D model of the liver and its internal structure and the actual configuration given by the organ surface extracted from the intra-operative image. The algorithm behind the method combines the iterative closest point technique with a biomechanical model based on a co-rotational formulation of linear elasticity which accounts for large deformations of the tissue. The performance, robustness and accuracy of the method is quantitatively assessed on a control semi-synthetic dataset with known ground truth and a real dataset composed of nine pairs of abdominal CT scans acquired in supine and flank positions. It is shown that the proposed surface-matching method is capable of reducing the target registration error evaluated of the internal structures of the organ from more than 40 mm to less then 10 mm. Moreover, the control data is used to demonstrate the compatibility of the method with intra-operative clinical scenario, while the real datasets are utilized to study the impact of parametrization on the accuracy of the method. The method is also compared to a state-of-the art intensity-based registration technique in terms of accuracy and performance

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    An Automated Liver Vasculature Segmentation from CT Scans for Hepatic Surgical Planning

    Get PDF
    Liver vasculature segmentation is a crucial step for liver surgical planning. Segmentation of liver vasculature is an important part of the 3D visualisation of the liver anatomy. The spatial relationship between vessels and other liver structures, like tumors and liver anatomic segments, helps in reducing the surgical treatment risks. However, liver vessels segmentation is a challenging task, that is due to low contrast with neighboring parenchyma, the complex anatomy, the very thin branches and very small vessels. This paper introduces a fully automated framework consist of four steps to segment the vessels inside the liver organ. Firstly, in the preprocessing step, a combination of two filtering techniques are used to extract and enhance vessels inside the liver region, first the vesselness filter is used to extract the vessels structure, and then the anisotropic coherence enhancing diffusion (CED) filter is used to enhance the intensity within the tubular vessels structure. This step is followed by a smart multiple thresholding to extract the initial vasculature segmentation. The liver vasculature structures, including hepatic veins connected to the inferior vena cava and the portal veins, are extracted. Finally, the inferior vena cava is segmented and excluded from the vessels segmentation, as it is not considered as part of the liver vasculature structure. The liver vessel segmentation method is validated on the publically available 3DIRCAD datasets. Dice coefficient (DSC) is used to evaluate the method, the average DSC score achieved a score 68.5%. The proposed approach succeeded to segment liver vasculature from the liver envelope accurately, which makes it as potential tool for clinical preoperative planning

    Biomechanics-based graph matching for augmented CT-CBCT

    Get PDF
    International audiencePurpose: Augmenting intraoperative cone beam computed tomography (CBCT) images with preoperative computed tomography (CT) data in the context of image-guided liver therapy. The expected benefit is an improved visualization of tu-mor(s), vascular system and other internal structures of interest. Method: An automatic elastic registration based on matching of vascular trees extracted from both the preoperative and intraoperative images. Although methods dedicated to non-rigid graph matching exist, they are not efficient when large in-traoperative deformations of tissues occur, as is the case during the liver surgery. The contribution is an extension of the graph matching algorithm using Gaussian process regression (GPR) [1]: First, an improved GPR matching is introduced by imposing additional constraints during the matching when the number of hypothesis is large; like the original algorithm, this extended version does not require a manual initialization of matching. Second, a fast biomechanical model is employed to make the method capable of handling large deformations. Results: The proposed automatic intraoperative augmentation is evaluated on both synthetic and real data. that the algorithm is capable of handling large deformations , thus being more robust and reliable than previous approaches. Moreover, the time required to perform the elastic registration is compatible with the intraopera-tive navigation scenario. Conclusion: A biomechanics-based graph matching method, which can handle large deformations and augment intraoperative CBCT, is presented and evaluated

    ๋ณต๋ถ€ CT์—์„œ ๊ฐ„๊ณผ ํ˜ˆ๊ด€ ๋ถ„ํ•  ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2020. 2. ์‹ ์˜๊ธธ.๋ณต๋ถ€ ์ „์‚ฐํ™” ๋‹จ์ธต ์ดฌ์˜ (CT) ์˜์ƒ์—์„œ ์ •ํ™•ํ•œ ๊ฐ„ ๋ฐ ํ˜ˆ๊ด€ ๋ถ„ํ• ์€ ์ฒด์  ์ธก์ •, ์น˜๋ฃŒ ๊ณ„ํš ์ˆ˜๋ฆฝ ๋ฐ ์ถ”๊ฐ€์ ์ธ ์ฆ๊ฐ• ํ˜„์‹ค ๊ธฐ๋ฐ˜ ์ˆ˜์ˆ  ๊ฐ€์ด๋“œ์™€ ๊ฐ™์€ ์ปดํ“จํ„ฐ ์ง„๋‹จ ๋ณด์กฐ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜๋Š”๋ฐ ํ•„์ˆ˜์ ์ธ ์š”์†Œ์ด๋‹ค. ์ตœ๊ทผ ๋“ค์–ด ์ปจ๋ณผ๋ฃจ์…”๋„ ์ธ๊ณต ์‹ ๊ฒฝ๋ง (CNN) ํ˜•ํƒœ์˜ ๋”ฅ ๋Ÿฌ๋‹์ด ๋งŽ์ด ์ ์šฉ๋˜๋ฉด์„œ ์˜๋ฃŒ ์˜์ƒ ๋ถ„ํ• ์˜ ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋˜๊ณ  ์žˆ์ง€๋งŒ, ์‹ค์ œ ์ž„์ƒ์— ์ ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋†’์€ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ์ œ๊ณตํ•˜๊ธฐ๋Š” ์—ฌ์ „ํžˆ ์–ด๋ ต๋‹ค. ๋˜ํ•œ ๋ฌผ์ฒด์˜ ๊ฒฝ๊ณ„๋Š” ์ „ํ†ต์ ์œผ๋กœ ์˜์ƒ ๋ถ„ํ• ์—์„œ ๋งค์šฐ ์ค‘์š”ํ•œ ์š”์†Œ๋กœ ์ด์šฉ๋˜์—ˆ์ง€๋งŒ, CT ์˜์ƒ์—์„œ ๊ฐ„์˜ ๋ถˆ๋ถ„๋ช…ํ•œ ๊ฒฝ๊ณ„๋ฅผ ์ถ”์ถœํ•˜๊ธฐ๊ฐ€ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์— ํ˜„๋Œ€ CNN์—์„œ๋Š” ์ด๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ณ  ์žˆ๋‹ค. ๊ฐ„ ํ˜ˆ๊ด€ ๋ถ„ํ•  ์ž‘์—…์˜ ๊ฒฝ์šฐ, ๋ณต์žกํ•œ ํ˜ˆ๊ด€ ์˜์ƒ์œผ๋กœ๋ถ€ํ„ฐ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ๋งŒ๋“ค๊ธฐ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์— ๋”ฅ ๋Ÿฌ๋‹์„ ์ ์šฉํ•˜๊ธฐ๊ฐ€ ์–ด๋ ต๋‹ค. ๋˜ํ•œ ์–‡์€ ํ˜ˆ๊ด€ ๋ถ€๋ถ„์˜ ์˜์ƒ ๋ฐ๊ธฐ ๋Œ€๋น„๊ฐ€ ์•ฝํ•˜์—ฌ ์›๋ณธ ์˜์ƒ์—์„œ ์‹๋ณ„ํ•˜๊ธฐ๊ฐ€ ๋งค์šฐ ์–ด๋ ต๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์œ„ ์–ธ๊ธ‰ํ•œ ๋ฌธ์ œ๋“ค์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋œ CNN๊ณผ ์–‡์€ ํ˜ˆ๊ด€์„ ํฌํ•จํ•˜๋Š” ๋ณต์žกํ•œ ๊ฐ„ ํ˜ˆ๊ด€์„ ์ •ํ™•ํ•˜๊ฒŒ ๋ถ„ํ• ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๊ฐ„ ๋ถ„ํ•  ์ž‘์—…์—์„œ ์šฐ์ˆ˜ํ•œ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ๊ฐ–๋Š” CNN์„ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•ด, ๋‚ด๋ถ€์ ์œผ๋กœ ๊ฐ„ ๋ชจ์–‘์„ ์ถ”์ •ํ•˜๋Š” ๋ถ€๋ถ„์ด ํฌํ•จ๋œ ์ž๋™ ์ปจํ…์ŠคํŠธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ, CNN์„ ์‚ฌ์šฉํ•œ ํ•™์Šต์— ๊ฒฝ๊ณ„์„ ์˜ ๊ฐœ๋…์ด ์ƒˆ๋กญ๊ฒŒ ์ œ์•ˆ๋œ๋‹ค. ๋ชจํ˜ธํ•œ ๊ฒฝ๊ณ„๋ถ€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์–ด ์ „์ฒด ๊ฒฝ๊ณ„ ์˜์—ญ์„ CNN์— ํ›ˆ๋ จํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์— ๋ฐ˜๋ณต๋˜๋Š” ํ•™์Šต ๊ณผ์ •์—์„œ ์ธ๊ณต ์‹ ๊ฒฝ๋ง์ด ์Šค์Šค๋กœ ์˜ˆ์ธกํ•œ ํ™•๋ฅ ์—์„œ ๋ถ€์ •ํ™•ํ•˜๊ฒŒ ์ถ”์ •๋œ ๋ถ€๋ถ„์  ๊ฒฝ๊ณ„๋งŒ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ธ๊ณต ์‹ ๊ฒฝ๋ง์„ ํ•™์Šตํ•œ๋‹ค. ์‹คํ—˜์  ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ CNN์ด ๋‹ค๋ฅธ ์ตœ์‹  ๊ธฐ๋ฒ•๋“ค๋ณด๋‹ค ์ •ํ™•๋„๊ฐ€ ์šฐ์ˆ˜ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์ธ๋‹ค. ๋˜ํ•œ, ์ œ์•ˆ๋œ CNN์˜ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๊ฐ„ ํ˜ˆ๊ด€ ๋ถ„ํ• ์—์„œ๋Š” ๊ฐ„ ๋‚ด๋ถ€์˜ ๊ด€์‹ฌ ์˜์—ญ์„ ์ง€์ •ํ•˜๊ธฐ ์œ„ํ•ด ์•ž์„œ ํš๋“ํ•œ ๊ฐ„ ์˜์—ญ์„ ํ™œ์šฉํ•œ๋‹ค. ์ •ํ™•ํ•œ ๊ฐ„ ํ˜ˆ๊ด€ ๋ถ„ํ• ์„ ์œ„ํ•ด ํ˜ˆ๊ด€ ํ›„๋ณด ์ ๋“ค์„ ์ถ”์ถœํ•˜์—ฌ ์‚ฌ์šฉํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ํ™•์‹คํ•œ ํ›„๋ณด ์ ๋“ค์„ ์–ป๊ธฐ ์œ„ํ•ด, ์‚ผ์ฐจ์› ์˜์ƒ์˜ ์ฐจ์›์„ ๋จผ์ € ์ตœ๋Œ€ ๊ฐ•๋„ ํˆฌ์˜ ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ์ด์ฐจ์›์œผ๋กœ ๋‚ฎ์ถ˜๋‹ค. ์ด์ฐจ์› ์˜์ƒ์—์„œ๋Š” ๋ณต์žกํ•œ ํ˜ˆ๊ด€์˜ ๊ตฌ์กฐ๊ฐ€ ๋ณด๋‹ค ๋‹จ์ˆœํ™”๋  ์ˆ˜ ์žˆ๋‹ค. ์ด์–ด์„œ, ์ด์ฐจ์› ์˜์ƒ์—์„œ ํ˜ˆ๊ด€ ๋ถ„ํ• ์„ ์ˆ˜ํ–‰ํ•˜๊ณ  ํ˜ˆ๊ด€ ํ”ฝ์…€๋“ค์€ ์›๋ž˜์˜ ์‚ผ์ฐจ์› ๊ณต๊ฐ„์ƒ์œผ๋กœ ์—ญ ํˆฌ์˜๋œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ „์ฒด ํ˜ˆ๊ด€์˜ ๋ถ„ํ• ์„ ์œ„ํ•ด ์›๋ณธ ์˜์ƒ๊ณผ ํ˜ˆ๊ด€ ํ›„๋ณด ์ ๋“ค์„ ๋ชจ๋‘ ์‚ฌ์šฉํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ ˆ๋ฒจ ์…‹ ๊ธฐ๋ฐ˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋ณต์žกํ•œ ๊ตฌ์กฐ๊ฐ€ ๋‹จ์ˆœํ™”๋˜๊ณ  ์–‡์€ ํ˜ˆ๊ด€์ด ๋” ์ž˜ ๋ณด์ด๋Š” ์ด์ฐจ์› ์˜์ƒ์—์„œ ์–ป์€ ํ›„๋ณด ์ ๋“ค์„ ์‚ฌ์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์–‡์€ ํ˜ˆ๊ด€ ๋ถ„ํ• ์—์„œ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋ณด์ธ๋‹ค. ์‹คํ—˜์  ๊ฒฐ๊ณผ์— ์˜ํ•˜๋ฉด ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ž˜๋ชป๋œ ์˜์—ญ์˜ ์ถ”์ถœ ์—†์ด ๋‹ค๋ฅธ ๋ ˆ๋ฒจ ์…‹ ๊ธฐ๋ฐ˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค. ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ฐ„๊ณผ ํ˜ˆ๊ด€์„ ๋ถ„ํ• ํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ œ์•ˆ๋œ ์ž๋™ ์ปจํ…์ŠคํŠธ ๊ตฌ์กฐ๋Š” ์‚ฌ๋žŒ์ด ๋””์ž์ธํ•œ ํ•™์Šต ๊ณผ์ •์ด ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ํฌ๊ฒŒ ํ–ฅ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์ธ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ œ์•ˆ๋œ ๊ฒฝ๊ณ„์„  ํ•™์Šต ๊ธฐ๋ฒ•์œผ๋กœ CNN์„ ์‚ฌ์šฉํ•œ ์˜์ƒ ๋ถ„ํ• ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒํ•  ์ˆ˜ ์žˆ์Œ์„ ๋‚ดํฌํ•œ๋‹ค. ๊ฐ„ ํ˜ˆ๊ด€์˜ ๋ถ„ํ• ์€ ์ด์ฐจ์› ์ตœ๋Œ€ ๊ฐ•๋„ ํˆฌ์˜ ๊ธฐ๋ฐ˜ ์ด๋ฏธ์ง€๋กœ๋ถ€ํ„ฐ ํš๋“๋œ ํ˜ˆ๊ด€ ํ›„๋ณด ์ ๋“ค์„ ํ†ตํ•ด ์–‡์€ ํ˜ˆ๊ด€๋“ค์ด ์„ฑ๊ณต์ ์œผ๋กœ ๋ถ„ํ• ๋  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์ธ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ฐ„์˜ ํ•ด๋ถ€ํ•™์  ๋ถ„์„๊ณผ ์ž๋™ํ™”๋œ ์ปดํ“จํ„ฐ ์ง„๋‹จ ๋ณด์กฐ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜๋Š” ๋ฐ ๋งค์šฐ ์ค‘์š”ํ•œ ๊ธฐ์ˆ ์ด๋‹ค.Accurate liver and its vessel segmentation on abdominal computed tomography (CT) images is one of the most important prerequisites for computer-aided diagnosis (CAD) systems such as volumetric measurement, treatment planning, and further augmented reality-based surgical guide. In recent years, the application of deep learning in the form of convolutional neural network (CNN) has improved the performance of medical image segmentation, but it is difficult to provide high generalization performance for the actual clinical practice. Furthermore, although the contour features are an important factor in the image segmentation problem, they are hard to be employed on CNN due to many unclear boundaries on the image. In case of a liver vessel segmentation, a deep learning approach is impractical because it is difficult to obtain training data from complex vessel images. Furthermore, thin vessels are hard to be identified in the original image due to weak intensity contrasts and noise. In this dissertation, a CNN with high generalization performance and a contour learning scheme is first proposed for liver segmentation. Secondly, a liver vessel segmentation algorithm is presented that accurately segments even thin vessels. To build a CNN with high generalization performance, the auto-context algorithm is employed. The auto-context algorithm goes through two pipelines: the first predicts the overall area of a liver and the second predicts the final liver using the first prediction as a prior. This process improves generalization performance because the network internally estimates shape-prior. In addition to the auto-context, a contour learning method is proposed that uses only sparse contours rather than the entire contour. Sparse contours are obtained and trained by using only the mispredicted part of the network's final prediction. Experimental studies show that the proposed network is superior in accuracy to other modern networks. Multiple N-fold tests are also performed to verify the generalization performance. An algorithm for accurate liver vessel segmentation is also proposed by introducing vessel candidate points. To obtain confident vessel candidates, the 3D image is first reduced to 2D through maximum intensity projection. Subsequently, vessel segmentation is performed from the 2D images and the segmented pixels are back-projected into the original 3D space. Finally, a new level set function is proposed that utilizes both the original image and vessel candidate points. The proposed algorithm can segment thin vessels with high accuracy by mainly using vessel candidate points. The reliability of the points can be higher through robust segmentation in the projected 2D images where complex structures are simplified and thin vessels are more visible. Experimental results show that the proposed algorithm is superior to other active contour models. The proposed algorithms present a new method of segmenting the liver and its vessels. The auto-context algorithm shows that a human-designed curriculum (i.e., shape-prior learning) can improve generalization performance. The proposed contour learning technique can increase the accuracy of a CNN for image segmentation by focusing on its failures, represented by sparse contours. The vessel segmentation shows that minor vessel branches can be successfully segmented through vessel candidate points obtained by reducing the image dimension. The algorithms presented in this dissertation can be employed for later analysis of liver anatomy that requires accurate segmentation techniques.Chapter 1 Introduction 1 1.1 Background and motivation 1 1.2 Problem statement 3 1.3 Main contributions 6 1.4 Contents and organization 9 Chapter 2 Related Works 10 2.1 Overview 10 2.2 Convolutional neural networks 11 2.2.1 Architectures of convolutional neural networks 11 2.2.2 Convolutional neural networks in medical image segmentation 21 2.3 Liver and vessel segmentation 37 2.3.1 Classical methods for liver segmentation 37 2.3.2 Vascular image segmentation 40 2.3.3 Active contour models 46 2.3.4 Vessel topology-based active contour model 54 2.4 Motivation 60 Chapter 3 Liver Segmentation via Auto-Context Neural Network with Self-Supervised Contour Attention 62 3.1 Overview 62 3.2 Single-pass auto-context neural network 65 3.2.1 Skip-attention module 66 3.2.2 V-transition module 69 3.2.3 Liver-prior inference and auto-context 70 3.2.4 Understanding the network 74 3.3 Self-supervising contour attention 75 3.4 Learning the network 81 3.4.1 Overall loss function 81 3.4.2 Data augmentation 81 3.5 Experimental Results 83 3.5.1 Overview 83 3.5.2 Data configurations and target of comparison 84 3.5.3 Evaluation metric 85 3.5.4 Accuracy evaluation 87 3.5.5 Ablation study 93 3.5.6 Performance of generalization 110 3.5.7 Results from ground-truth variations 114 3.6 Discussion 116 Chapter 4 Liver Vessel Segmentation via Active Contour Model with Dense Vessel Candidates 119 4.1 Overview 119 4.2 Dense vessel candidates 124 4.2.1 Maximum intensity slab images 125 4.2.2 Segmentation of 2D vessel candidates and back-projection 130 4.3 Clustering of dense vessel candidates 135 4.3.1 Virtual gradient-assisted regional ACM 136 4.3.2 Localized regional ACM 142 4.4 Experimental results 145 4.4.1 Overview 145 4.4.2 Data configurations and environment 146 4.4.3 2D segmentation 146 4.4.4 ACM comparisons 149 4.4.5 Evaluation of bifurcation points 154 4.4.6 Computational performance 159 4.4.7 Ablation study 160 4.4.8 Parameter study 162 4.5 Application to portal vein analysis 164 4.6 Discussion 168 Chapter 5 Conclusion and Future Works 170 Bibliography 172 ์ดˆ๋ก 197Docto

    Human treelike tubular structure segmentation: A comprehensive review and future perspectives

    Get PDF
    Various structures in human physiology follow a treelike morphology, which often expresses complexity at very fine scales. Examples of such structures are intrathoracic airways, retinal blood vessels, and hepatic blood vessels. Large collections of 2D and 3D images have been made available by medical imaging modalities such as magnetic resonance imaging (MRI), computed tomography (CT), Optical coherence tomography (OCT) and ultrasound in which the spatial arrangement can be observed. Segmentation of these structures in medical imaging is of great importance since the analysis of the structure provides insights into disease diagnosis, treatment planning, and prognosis. Manually labelling extensive data by radiologists is often time-consuming and error-prone. As a result, automated or semi-automated computational models have become a popular research field of medical imaging in the past two decades, and many have been developed to date. In this survey, we aim to provide a comprehensive review of currently publicly available datasets, segmentation algorithms, and evaluation metrics. In addition, current challenges and future research directions are discussed

    Patient-specific Biomechanical Modeling for Guidance during Minimally-invasive Hepatic Surgery

    Get PDF
    International audienceDuring the minimally-invasive liver surgery, only the partial surface view of the liver is usually provided to the surgeon via the laparoscopic camera. Therefore, it is necessary to estimate the actual position of the internal structures such as tumors and vessels from the pre-operative images. Nevertheless, such task can be highly challenging since during the intervention, the abdominal organs undergo important deformations due to the pneumoperitoneum, respiratory and cardiac motion and the interaction with the surgical tools. Therefore, a reliable automatic system for intra-operative guidance requires fast and reliable registration of the pre- and intra-operative data.In this paper we present a complete pipeline for the registration of pre-operative patient-specific image data to the sparse and incomplete intra-operative data. While the intra-operative data is represented by a point cloud extracted from the stereo-endoscopic images, the pre-operative data is used to reconstruct a biomechanical model which is necessary for accurate estimation of the position of the internal structures, considering the actual deformations. This model takes into account the patient-specific liver anatomy composed of parenchyma, vascularization and capsule, and is enriched with anatomical boundary conditions transferred from an atlas. The registration process employs the iterative closest point technique together with a penalty-based method.We perform a quantitative assessment based on the evaluation of the target registration error on synthetic data as well as a qualitative assessment on real patient data. We demonstrate that the proposed registration method provides good results in terms of both accuracy and robustness w. r. t. the quality of the intra-operative data
    corecore