48 research outputs found

    Some Formal Results on Positivity, Stability, and Endemic Steady-State Attainability Based on Linear Algebraic Tools for a Class of Epidemic Models with Eventual Incommensurate Delays

    Get PDF
    A formal description of typical compartmental epidemic models obtained is presented by splitting the state into an infective substate, or infective compartment, and a noninfective substate, or noninfective compartment. A general formal study to obtain the reproduction number and discuss the positivity and stability properties of equilibrium points is proposed and formally discussed. Such a study unifies previous related research and it is based on linear algebraic tools to investigate the positivity and the stability of the linearized dynamics around the disease-free and endemic equilibrium points. To this end, the complete state vector is split into the dynamically coupled infective and noninfective compartments each one containing the corresponding state components. The study is then extended to the case of commensurate internal delays when all the delays are integer multiples of a base delay. Two auxiliary delay-free systems are defined related to the linearization processes around the equilibrium points which correspond to the zero delay, i.e., delay-free, and infinity delay cases. Those auxiliary systems are used to formulate stability and positivity properties independently of the delay sizes. Some examples are discussed to the light of the developed formal study.The authors are grateful to the Spanish Government for Grants DPI2015-64766-R, RTI2018-094336-B-I00, and DPI2016-77271-R (MINECO/FEDER, UE)

    Modeling, optimization, and sensitivity analysis of a continuous multi-segment crystallizer for production of active pharmaceutical ingredients

    Get PDF
    We have investigated the simulation-based, steady-state optimization of a new type of crystallizer for the production of pharmaceuticals. The multi-segment, multi-addition plug-flow crystallizer (MSMA-PFC) offers better control over supersaturation in one dimension compared to a batch or stirred-tank crystallizer. Through use of a population balance framework, we have written the governing model equations of population balance and mass balance on the crystallizer segments. The solution of these equations was accomplished through either the method of moments or the finite volume method. The goal was to optimize the performance of the crystallizer with respect to certain quantities, such as maximizing the mean crystal size, minimizing the coefficient of variation, or minimizing the sum of the squared errors when attempting to hit a target distribution. Such optimizations are all highly nonconvex, necessitating the use of the genetic algorithm. Our results for the optimization of a process for crystallizing flufenamic acid showed improvement in crystal size over prior literature results. Through the use of a novel simultaneous design and control (SDC) methodology, we have further optimized the flowrates and crystallizer geometry in tandem.^ We have further investigated the robustness of this process and observe significant sensitivity to error in antisolvent flowrate, as well as the kinetic parameters of crystallization. We have lastly performed a parametric study on the use of the MSMA-PFC for in-situ dissolution of fine crystals back into solution. Fine crystals are a known processing difficulty in drug manufacture, thus motivating the development of a process that can eliminate them efficiently. Prior results for cooling crystallization indicated this to be possible. However, our results show little to no dissolution is used after optimizing the crystallizer, indicating the negative impact of adding pure solvent to the process (reduced concentration via dilution, and decreased residence time) outweighs the positive benefits of dissolving fines. The prior results for cooling crystallization did not possess this coupling between flowrate, residence time, and concentration, thus making fines dissolution significantly more beneficial for that process. We conclude that the success observed in hitting the target distribution has more to do with using multiple segments and having finer control over supersaturation than with the ability to go below solubility. Our results showed that excessive nucleation still overwhelms the MSMA-PFC for in-situ fines dissolution when nucleation is too high
    corecore