55,616 research outputs found

    Robust Algorithms for Object Localization

    Get PDF
    Object localization using sensed data features and corresponding model features is a fundamental problem in machine vision. We reformulate object localization as a least squares problem: the optimal pose estimate minimizes the squared error (discrepancy) between the sensed and predicted data. The resulting problem is non-linear and previous attempts to estimate the optimal pose using local methods such as gradient descent suffer from local minima and, at times, return incorrect results. In this paper, we describe an exact, accurate and efficient algorithm based on resultants, linear algebra, and numerical analysis, for solving the nonlinear least squares problem associated with localizing two-dimensional objects given two-dimensional data. This work is aimed at tasks where the sensor features and the model features are of different types and where either the sensor features or model features are points. It is applicable to localizing modeled objects from image data, and estimates the pose using all of the pixels in the detected edges. The algorithm's running time depends mainly on the type of non-point features, and it also depends to a small extent on the number of features. On a SPARC 10, the algorithm takes a few microseconds for rectilinear features, a few milliseconds for linear features, and a few seconds for circular features

    Power Optimization for Network Localization

    Get PDF
    Reliable and accurate localization of mobile objects is essential for many applications in wireless networks. In range-based localization, the position of the object can be inferred using the distance measurements from wireless signals exchanged with active objects or reflected by passive ones. Power allocation for ranging signals is important since it affects not only network lifetime and throughput but also localization accuracy. In this paper, we establish a unifying optimization framework for power allocation in both active and passive localization networks. In particular, we first determine the functional properties of the localization accuracy metric, which enable us to transform the power allocation problems into second-order cone programs (SOCPs). We then propose the robust counterparts of the problems in the presence of parameter uncertainty and develop asymptotically optimal and efficient near-optimal SOCP-based algorithms. Our simulation results validate the efficiency and robustness of the proposed algorithms.Comment: 15 pages, 7 figure

    Micro-Net: A unified model for segmentation of various objects in microscopy images

    Get PDF
    Object segmentation and structure localization are important steps in automated image analysis pipelines for microscopy images. We present a convolution neural network (CNN) based deep learning architecture for segmentation of objects in microscopy images. The proposed network can be used to segment cells, nuclei and glands in fluorescence microscopy and histology images after slight tuning of input parameters. The network trains at multiple resolutions of the input image, connects the intermediate layers for better localization and context and generates the output using multi-resolution deconvolution filters. The extra convolutional layers which bypass the max-pooling operation allow the network to train for variable input intensities and object size and make it robust to noisy data. We compare our results on publicly available data sets and show that the proposed network outperforms recent deep learning algorithms

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    The World of Fast Moving Objects

    Full text link
    The notion of a Fast Moving Object (FMO), i.e. an object that moves over a distance exceeding its size within the exposure time, is introduced. FMOs may, and typically do, rotate with high angular speed. FMOs are very common in sports videos, but are not rare elsewhere. In a single frame, such objects are often barely visible and appear as semi-transparent streaks. A method for the detection and tracking of FMOs is proposed. The method consists of three distinct algorithms, which form an efficient localization pipeline that operates successfully in a broad range of conditions. We show that it is possible to recover the appearance of the object and its axis of rotation, despite its blurred appearance. The proposed method is evaluated on a new annotated dataset. The results show that existing trackers are inadequate for the problem of FMO localization and a new approach is required. Two applications of localization, temporal super-resolution and highlighting, are presented
    • …
    corecore