281 research outputs found

    Asymptotic Tracking Control of Uncertain MIMO Nonlinear Systems with Less Conservative Controllability Conditions

    Full text link
    For uncertain multiple inputs multi-outputs (MIMO) nonlinear systems, it is nontrivial to achieve asymptotic tracking, and most existing methods normally demand certain controllability conditions that are rather restrictive or even impractical if unexpected actuator faults are involved. In this note, we present a method capable of achieving zero-error steady-state tracking with less conservative (more practical) controllability condition. By incorporating a novel Nussbaum gain technique and some positive integrable function into the control design, we develop a robust adaptive asymptotic tracking control scheme for the system with time-varying control gain being unknown its magnitude and direction. By resorting to the existence of some feasible auxiliary matrix, the current state-of-art controllability condition is further relaxed, which enlarges the class of systems that can be considered in the proposed control scheme. All the closed-loop signals are ensured to be globally ultimately uniformly bounded. Moreover, such control methodology is further extended to the case involving intermittent actuator faults, with application to robotic systems. Finally, simulation studies are carried out to demonstrate the effectiveness and flexibility of this method

    Fault-tolerant neuro adaptive constrained control of wind turbines for power regulation with uncertain wind speed variation

    Get PDF
    This paper presents a novel adaptive fault-tolerant neural-based control design for wind turbines with an unknown dynamic and unknown wind speed. By utilizing the barrier Lyapunov function in the analysis of the Lyapunov direct method, the constrained behavior of the system is provided in which the rotor speed, its variation, and generated power remain in the desired bounds. In addition, input saturation is also considered in terms of smooth pitch actuator bounding. Furthermore, by utilizing a Nussbaum-type function in designing the control algorithm, the unpredictable wind speed variation is captured without requiring accurate wind speed measurement, observation, or estimation. Moreover, with the proposed adaptive analytic algorithms, together with the use of radial basis function neural networks, a robust, adaptive, and fault-tolerant control scheme is developed without the need for precise information about the wind turbine model nor the pitch actuator faults. Additionally, the computational cost of the resultant control law is reduced by utilizing a dynamic surface control technique. The effectiveness of the developed design is verified using theoretical analysis tools and illustrated by numerical simulations on a high-fidelity wind turbine benchmark model with different fault scenarios. Comparison of the achieved results to the ones that can be obtained via an available industrial controller shows the advantages of the proposed scheme

    Review on auto-depth control system for an unmanned underwater remotely operated vehicle (ROV) using intelligent controller

    Get PDF
    This paper presents a review of auto-depth control system for an Unmanned Underwater Remotely operated Vehicle (ROV), focusing on the Artificial Intelligent Controller Techniques. Specifically, Fuzzy Logic Controller (FLC) is utilized in auto-depth control system for the ROV. This review covered recently published documents for auto-depth control of an Unmanned Underwater Vehicle (UUV). This paper also describes the control issues in UUV especially for the ROV, which has inspired the authors to develop a new technique for auto-depth control of the ROV, called the SIFLC. This technique was the outcome of an investigation and tuning of two parameters, namely the break point and slope for the piecewise linear or slope for the linear approximation. Hardware comparison of the same concepts of ROV design was also discussed. The ROV design is for smallscale, open frame and lower speed. The review on auto-depth control system for ROV, provides insights for readers to design new techniques and algorithms for auto-depth control

    A Survey of Decentralized Adaptive Control

    Get PDF

    Wind Turbine Reliability Improvement by Fault Tolerant Control

    Get PDF
    This thesis investigates wind turbine reliability improvement, utilizing model-based fault tolerant control, so that the wind turbine continues to operate satisfactorily with the same performance index in the presence of faults as in fault-free situations. Numerical simulations are conducted on the wind turbine bench mark model associated with the considered faults and comparison is made between the performance of the proposed controllers and industrial controllers illustrating the superiority of the proposed ones

    Modeling and Robust Control of Flying Robots Using Intelligent Approaches Modélisation et commande robuste des robots volants en utilisant des approches intelligentes

    Get PDF
    This thesis aims to modeling and robust controlling of a flying robot of quadrotor type. Where we focused in this thesis on quadrotor unmanned Aerial Vehicle (QUAV). Intelligent nonlinear controllers and intelligent fractional-order nonlinear controllers are designed to control. The QUAV system is considered as MIMO large-scale system that can be divided on six interconnected single-input–single-output (SISO) subsystems, which define one DOF, i.e., three-angle subsystems with three position subsystems. In addition, nonlinear models is considered and assumed to suffer from the incidence of parameter uncertainty. Every parameters such as mass, inertia of the system are assumed completely unknown and change over time without prior information. Next, basing on nonlinear, Fractional-Order nonlinear and the intelligent adaptive approximate techniques a control law is established for all subsystems. The stability is performed by Lyapunov method and getting the desired output with respect to the desired input. The modeling and control is done using MATLAB/Simulink. At the end, the simulation tests are performed to that, the designed controller is able to maintain best performance of the QUAV even in the presence of unknown dynamics, parametric uncertainties and external disturbance
    corecore