529 research outputs found

    Adaptive beamforming using frequency invariant uniform concentric circular arrays

    Get PDF
    This paper proposes new adaptive beamforming algorithms for a class of uniform concentric circular arrays (UCCAs) having near-frequency invariant characteristics. The basic principle of the UCCA frequency invariant beamformer (FIB) is to transform the received signals to the phase mode representation and remove the frequency dependence of individual phase modes through the use of a digital beamforming or compensation network. As a result, the far field pattern of the array is electronic steerable and is approximately invariant over a wider range of frequencies than the uniform circular arrays (UCAs). The beampattern is governed by a small set of variable beamformer weights. Based on the minimum variance distortionless response (MVDR) and generalized sidelobe canceller (GSC) methods, new recursive adaptive beamforming algorithms for UCCA-FIB are proposed. In addition, robust versions of these adaptive beamforming algorithms for mitigating direction-of-arrival (DOA) and sensor position errors are developed. Simulation results show that the proposed adaptive UCCA-FIBs converge much faster and reach a considerable lower steady-state error than conventional broadband UCCA beamformers without using the compensation network. Since fewer variable multipliers are required in the proposed algorithms, it also leads to lower arithmetic complexity and faster tracking performance than conventional methods. © 2007 IEEE.published_or_final_versio

    Robust Recursive Steering Vector Estimation and Adaptive Beamforming under Sensor Uncertainties

    Get PDF
    published_or_final_versio

    Robust Recursive Algorithm under Uncertainties via Worst-Case SINR Maximization

    Get PDF

    Steering vector estimation and beamforming under uncertainties

    Get PDF
    In this paper, we propose a new method for estimating the steering vector under uncertainties, which is utilized for improving the robustness of beamforming. We show that the desired steering vector can be estimated in closed form from a convex optimization problem by making use of the subspace principle. As this method is developed based on an extended version of the orthonormal PAST (OPAST), the steering vector can be recursively estimated with very low complexity and moving sources can be handled. To further improve the performance of beamforming, the uncertainty of the array covariance matrix is taken into account. Numerical results demonstrate that the proposed method performs well in the presence of uncertainties. © 2012 IEEE.published_or_final_versio

    A Low-Cost Robust Distributed Linearly Constrained Beamformer for Wireless Acoustic Sensor Networks with Arbitrary Topology

    Full text link
    We propose a new robust distributed linearly constrained beamformer which utilizes a set of linear equality constraints to reduce the cross power spectral density matrix to a block-diagonal form. The proposed beamformer has a convenient objective function for use in arbitrary distributed network topologies while having identical performance to a centralized implementation. Moreover, the new optimization problem is robust to relative acoustic transfer function (RATF) estimation errors and to target activity detection (TAD) errors. Two variants of the proposed beamformer are presented and evaluated in the context of multi-microphone speech enhancement in a wireless acoustic sensor network, and are compared with other state-of-the-art distributed beamformers in terms of communication costs and robustness to RATF estimation errors and TAD errors

    A new regularized QRD recursive least M-estimate algorithm: Performance analysis and applications

    Get PDF
    Proceedings of the International Conference on Green Circuits and Systems, 2010, p. 190-195This paper proposes a new regularized QR decomposition based recursive least M-estimate (R-QRRLM) adaptive filtering algorithm and studies its mean and mean square convergence performance and application to acoustic echo cancellation (AEC). The proposed algorithm extends the conventional RLM algorithm by imposing a weighted L2 regularization term on the coefficients to reduce the variance of the estimator. Moreover, a QRD-based algorithm is employed for efficient recursive implementation and improved numerical property. The mean convergence analysis shows that a bias solution to the classical Wiener solution will be introduced due to the regularization. The steady-state excess mean square error (EMSE) is derived and it suggests that the variance will decrease while the bias will increase with the regularization parameter. Therefore, regularization can help to trade bias for variance. In this study, the regularization parameter can be adaptively selected and the resultant variable regularization parameter QRRLM (VR-QRRLM) algorithm can obtain both high immunity to input variation and low steady-state EMSE values. The theoretical results are in good agreement with simulation results. Computer simulation results on AEC show that the R-QRRLM and VR-QRRLM algorithms considerably outperform the traditional RLS algorithm when the input signal level is low or during double talk. © 2010 IEEE.published_or_final_versio
    • …
    corecore