1,666 research outputs found

    Recent Advances in Robust Control

    Get PDF
    Robust control has been a topic of active research in the last three decades culminating in H_2/H_\infty and \mu design methods followed by research on parametric robustness, initially motivated by Kharitonov's theorem, the extension to non-linear time delay systems, and other more recent methods. The two volumes of Recent Advances in Robust Control give a selective overview of recent theoretical developments and present selected application examples. The volumes comprise 39 contributions covering various theoretical aspects as well as different application areas. The first volume covers selected problems in the theory of robust control and its application to robotic and electromechanical systems. The second volume is dedicated to special topics in robust control and problem specific solutions. Recent Advances in Robust Control will be a valuable reference for those interested in the recent theoretical advances and for researchers working in the broad field of robotics and mechatronics

    Energy storage systems and power conversion electronics for e-transportation and smart grid

    Get PDF
    The special issue “Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid” on MDPI Energies presents 20 accepted papers, with authors from North and South America, Asia, Europe and Africa, related to the emerging trends in energy storage and power conversion electronic circuits and systems, with a specific focus on transportation electrification and on the evolution of the electric grid to a smart grid. An extensive exploitation of renewable energy sources is foreseen for smart grid as well as a close integration with the energy storage and recharging systems of the electrified transportation era. Innovations at both algorithmic and hardware (i.e., power converters, electric drives, electronic control units (ECU), energy storage modules and charging stations) levels are proposed

    Disturbance/uncertainty estimation and attenuation techniques in PMSM drives–a survey

    Get PDF
    This paper gives a comprehensive overview on disturbance/uncertainty estimation and attenuation (DUEA) techniques in permanent magnet synchronous motor (PMSM) drives. Various disturbances and uncertainties in PMSM and also other alternating current (AC) motor drives are first reviewed which shows they have different behaviors and appear in different control loops of the system. The existing DUEA and other relevant control methods in handling disturbances and uncertainties widely used in PMSM drives, and their latest developments are then discussed and summarized. It also provides in-depth analysis of the relationship between these advanced control methods in the context of PMSM systems. When dealing with uncertainties,it is shown that DUEA has a different but complementary mechanism to widely used robust control and adaptive control. The similarities and differences in disturbance attenuation of DUEA and other promising methods such as internal model control and output regulation theory have been analyzed in detail. The wide applications of these methods in different AC motor drives (in particular in PMSM drives) are categorized and summarized. Finally the paper ends with the discussion on future directions in this area

    A New Load Torque Identification Sliding Mode Observer for Permanent Magnet Synchronous Machine Drive System

    Get PDF

    Advances in Control of Power Electronic Converters

    Get PDF
    This book proposes a list of contributions in the field of control of power electronics converters for different topologies: DC-DC, DC-AC and AC-DC. It particularly focuses on the use of different advanced control techniques with the aim of improving the performances, flexibility and efficiency in the context of several operation conditions. Sliding mode control, fuzzy logic based control, dead time compensation and optimal linear control are among the techniques developed in the special issue. Simulation and experimental results are provided by the authors to validate the proposed control strategies

    Second-order sliding-mode-based global control scheme for wind turbine-driven DFIGs subject to unbalanced and distorted grid voltage

    Get PDF
    Control algorithms for both the rotor- and grid-side power converters of a wind turbine-driven doubly-fed induction generator (DFIG) are detailed, and tuning equations are also provided to assist adjustment of their gains and constants. Those algorithms are based on the second-order sliding-mode control (2-SMC) approach, and they allow the wind turbine to satisfactorily operate under grid voltage non-idealities, such as simultaneously distorted and unbalanced scenarios. The presented solution turns out to be robust against parameter deviations and disturbances, and of high-performance dynamic response. Moreover, it drives the transistors of both power converters at a constant switching frequency, also avoiding decomposition in symmetrical sequences of either the grid voltage or currents. The controllers proposed for the two power converters are validated through experimentation on a 7-kW DFIG test bench subject to a significantly unbalanced and harmonically distorted grid voltage. Their robustness in the presence of both substantial parameter mismatch and disturbances attributable to wind variability is also assessed.This work was co-financed by the Spanish Ministry of Economy and Competitiveness –project code DPI2015-64985-R –, FEDER Funds and the University of the Basque Country (UPV/EHU) – call 2015 for specialisation of postdoctoral researchers –, having been developed within the ‘Intelligent Systems and Energy (SI + E)’ research group, funded by the Basque Government – research grant IT677-13 – and UPV/EHU – unit of formation and research UFI11/28

    Active-disturbance rejection control based on a novel sliding mode observer for PMSM speed and rotor position

    Get PDF
    A novel sliding mode observer (SMO) is presented for sensorless control of permanent magnet synchronous machines (PMSM). Compared to conventional sliding mode observers, the sigmoid function is used to weaken chattering problem; Kalman filter is substituted for conventional low-pass filters. Asymptotical stability is analyzed by Lyapunov stability theory. The active-disturbance rejection control (ADRC) speed regulator is designed with a given speed and estimated speed by novel sliding mode observer as inputs and iq* as output. The effect of load in speed loop is regarded as an external disturbance in the ADRC regulator. The disturbance is observed and compensated by ADRC, which leads to good dynamic and static performance and robust to load. Experimental results are provided to verify the feasibility and effectiveness of the proposed method

    High performance of sensorless sliding mode control of doubly fed induction motor associated with two multilevel inverters fed by VFDPC_SVM rectifier

    Get PDF
    A robust sensorless control based on the sliding-mode observer applied to a doubly fed induction motor associated with two three-level NPC-type voltage inverters fed by PWM rectifier with constant switching frequency and without line voltage sensors, is presented in this paper.  Also, we present an improved direct power control with virtual flux (VFDPC_SVM) for the control of three phase rectifier. Simulation results of this proposed system were analyzed using MATLAB environment

    Introduction to State Estimation of High-Rate System Dynamics

    Get PDF
    Engineering systems experiencing high-rate dynamic events, including airbags, debris detection, and active blast protection systems, could benefit from real-time observability for enhanced performance. However, the task of high-rate state estimation is challenging, in particular for real-time applications where the rate of the observer’s convergence needs to be in the microsecond range. This paper identifies the challenges of state estimation of high-rate systems and discusses the fundamental characteristics of high-rate systems. A survey of applications and methods for estimators that have the potential to produce accurate estimations for a complex system experiencing highly dynamic events is presented. It is argued that adaptive observers are important to this research. In particular, adaptive data-driven observers are advantageous due to their adaptability and lack of dependence on the system model

    Development and Implementation of Some Controllers for Performance Enhancement and Effective Utilization of Induction Motor Drive

    Get PDF
    The technological development in the field of power electronics and DSP technology is rapidly changing the aspect of drive technology. Implementations of advanced control strategies like field oriented control, linearization control, etc. to AC drives with variable voltage, and variable frequency source is possible because of the advent of high modulating frequency PWM inverters. The modeling complexity in the drive system and the subsequent requirement for modern control algorithms are being easily taken care by high computational power, low-cost DSP controllers. The present work is directed to study, design, development, and implementation of various controllers and their comparative evaluations to identify the proper controller for high-performance induction motor (IM) drives. The dynamic modeling for decoupling control of IM is developed by making the flux and torque decoupled. The simulation is carried out in the stationary reference frame with linearized control based on state-space linearization technique. Further, comprehensive and systematic design procedures are derived to tune the PI controllers for both electrical and mechanical subsystems. However, the PI-controller performance is not satisfactory under various disturbances and system uncertainties. Also, precise mathematical model, gain values, and continuous tuning are required for the controller design to obtain high performance. Thus, to overcome these drawbacks, an adapted control strategy based on Adaptive Neuro-Fuzzy Inference System (ANFIS) based controller is developed and implemented in real-time to validate different control strategies. The superiority of the proposed controller is analyzed and is contrasted with the conventional PI controller-based linearized IM drive. The simplified neuro-fuzzy control (NFC) integrates the concept of fuzzy logic and neural network structure like conventional NFC, but it has the advantages of simplicity and improved computational efficiency over conventional NFC as the single input introduced here is an error instead of two inputs error and change in error as in conventional NFC. This structure makes the proposed NFC robust and simple as compared to conventional NFC and thus, can be easily applied to real-time industrial applications. The proposed system incorporated with different control methods is also validated with extensive experimental results using DSP2812. The effectiveness of the proposed method using feedback linearization of IM drive is investigated in simulation as well as in experiment with different working modes. It is evident from the comparative results that the system performance is not deteriorated using proposed simplified NFC as compared to the conventional NFC, rather it shows superior performance over PI-controller-based drive. A hybrid fuel cell (FC) supply system to deliver the power demanded by the feedback linearization (FBL) based IM drive is designed and implemented. The modified simple hybrid neuro-fuzzy sliding-mode control (NFSMC) incorporated with the intuitive FBL substantially reduces torque chattering and improves speed response, giving optimal drive performance under system uncertainties and disturbances. This novel technique also has the benefit of reduced computational burden over conventional NFSMC and thus, suitable for real-time industrial applications. The parameters of the modified NFC is tuned by an adaptive mechanism based on sliding-mode control (SMC). A FC stack with a dc/dc boost converter is considered here as a separate external source during interruption of main supply for maintaining the supply to the motor drive control through the inverter, thereby reducing the burden and average rating of the inverter. A rechargeable battery used as an energy storage supplements the FC during different operating conditions of the drive system. The effectiveness of the proposed method using FC-based linearized IM drive is investigated in simulation, and the efficacy of the proposed controller is validated in real-time. It is evident from the results that the system provides optimal dynamic performance in terms of ripples, overshoot, and settling time responses and is robust in terms of parameters variation and external load
    corecore