35,761 research outputs found

    Classification of Vehicles using Monocular 3D Reconstruction

    Get PDF
    State of the art 3D reconstruction techniques utilize frames from a video sequence to render a 3D model of the scene. Our 3D reconstruction technique utilizes Speeded-Up Robust Features along with optical flow points to create a dense point cloud. Each point within the model has been tracked from frame to frame and triangulated into its (X,Y,Z) model position. We present an application for these structure from motion models that exploits our previous work in 3D object classification. In our experiments, we reconstruct a parking lot scene that contains several vehicles. The first step of our object classification algorithm is to segment each of the vehicles. Then, for each separate point cluster, our algorithm utilizes the volumetric and shape properties of the 3D object to label it with a vehicle type. The novelty of this classification approach allows us to tackle the noise challenges commonly associated with monocular 3D reconstructed models.https://ecommons.udayton.edu/stander_posters/1652/thumbnail.jp

    Camera calibration of long image sequences with the presence of occlusions

    Get PDF
    Camera calibration is a critical problem in applications such as augmented reality and image based model reconstruction. When constructing a 3D model of an object from an uncalibrated video sequence, large amounts of frames and self occlusions of parts of the object are common and difficult problems. In this paper we present a fast and robust algorithm that uses a divide and conquer strategy to split the video sequence into sub-sequences containing only the most relevant frames. Then a robust stratified linear based algorithm is able to calibrate each of the subsequences to a metric structure and finally the subsequences are merged together and a final non-linearoptimization refines the solution. Examples of real datareconstructions are presented.Postprint (author’s final draft

    Temporally coherent 4D reconstruction of complex dynamic scenes

    Get PDF
    This paper presents an approach for reconstruction of 4D temporally coherent models of complex dynamic scenes. No prior knowledge is required of scene structure or camera calibration allowing reconstruction from multiple moving cameras. Sparse-to-dense temporal correspondence is integrated with joint multi-view segmentation and reconstruction to obtain a complete 4D representation of static and dynamic objects. Temporal coherence is exploited to overcome visual ambiguities resulting in improved reconstruction of complex scenes. Robust joint segmentation and reconstruction of dynamic objects is achieved by introducing a geodesic star convexity constraint. Comparative evaluation is performed on a variety of unstructured indoor and outdoor dynamic scenes with hand-held cameras and multiple people. This demonstrates reconstruction of complete temporally coherent 4D scene models with improved nonrigid object segmentation and shape reconstruction.Comment: To appear in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2016 . Video available at: https://www.youtube.com/watch?v=bm_P13_-Ds

    Incremental learning of 3D-DCT compact representations for robust visual tracking

    Get PDF
    Visual tracking usually requires an object appearance model that is robust to changing illumination, pose and other factors encountered in video. Many recent trackers utilize appearance samples in previous frames to form the bases upon which the object appearance model is built. This approach has the following limitations: (a) the bases are data driven, so they can be easily corrupted; and (b) it is difficult to robustly update the bases in challenging situations. In this paper, we construct an appearance model using the 3D discrete cosine transform (3D-DCT). The 3D-DCT is based on a set of cosine basis functions, which are determined by the dimensions of the 3D signal and thus independent of the input video data. In addition, the 3D-DCT can generate a compact energy spectrum whose high-frequency coefficients are sparse if the appearance samples are similar. By discarding these high-frequency coefficients, we simultaneously obtain a compact 3D-DCT based object representation and a signal reconstruction-based similarity measure (reflecting the information loss from signal reconstruction). To efficiently update the object representation, we propose an incremental 3D-DCT algorithm, which decomposes the 3D-DCT into successive operations of the 2D discrete cosine transform (2D-DCT) and 1D discrete cosine transform (1D-DCT) on the input video data. As a result, the incremental 3D-DCT algorithm only needs to compute the 2D-DCT for newly added frames as well as the 1D-DCT along the third dimension, which significantly reduces the computational complexity. Based on this incremental 3D-DCT algorithm, we design a discriminative criterion to evaluate the likelihood of a test sample belonging to the foreground object. We then embed the discriminative criterion into a particle filtering framework for object state inference over time. Experimental results demonstrate the effectiveness and robustness of the proposed tracker.Xi Li, Anthony Dick, Chunhua Shen, Anton van den Hengel, and Hanzi Wan

    General Dynamic Scene Reconstruction from Multiple View Video

    Get PDF
    This paper introduces a general approach to dynamic scene reconstruction from multiple moving cameras without prior knowledge or limiting constraints on the scene structure, appearance, or illumination. Existing techniques for dynamic scene reconstruction from multiple wide-baseline camera views primarily focus on accurate reconstruction in controlled environments, where the cameras are fixed and calibrated and background is known. These approaches are not robust for general dynamic scenes captured with sparse moving cameras. Previous approaches for outdoor dynamic scene reconstruction assume prior knowledge of the static background appearance and structure. The primary contributions of this paper are twofold: an automatic method for initial coarse dynamic scene segmentation and reconstruction without prior knowledge of background appearance or structure; and a general robust approach for joint segmentation refinement and dense reconstruction of dynamic scenes from multiple wide-baseline static or moving cameras. Evaluation is performed on a variety of indoor and outdoor scenes with cluttered backgrounds and multiple dynamic non-rigid objects such as people. Comparison with state-of-the-art approaches demonstrates improved accuracy in both multiple view segmentation and dense reconstruction. The proposed approach also eliminates the requirement for prior knowledge of scene structure and appearance

    Total Variation Regularized Tensor RPCA for Background Subtraction from Compressive Measurements

    Full text link
    Background subtraction has been a fundamental and widely studied task in video analysis, with a wide range of applications in video surveillance, teleconferencing and 3D modeling. Recently, motivated by compressive imaging, background subtraction from compressive measurements (BSCM) is becoming an active research task in video surveillance. In this paper, we propose a novel tensor-based robust PCA (TenRPCA) approach for BSCM by decomposing video frames into backgrounds with spatial-temporal correlations and foregrounds with spatio-temporal continuity in a tensor framework. In this approach, we use 3D total variation (TV) to enhance the spatio-temporal continuity of foregrounds, and Tucker decomposition to model the spatio-temporal correlations of video background. Based on this idea, we design a basic tensor RPCA model over the video frames, dubbed as the holistic TenRPCA model (H-TenRPCA). To characterize the correlations among the groups of similar 3D patches of video background, we further design a patch-group-based tensor RPCA model (PG-TenRPCA) by joint tensor Tucker decompositions of 3D patch groups for modeling the video background. Efficient algorithms using alternating direction method of multipliers (ADMM) are developed to solve the proposed models. Extensive experiments on simulated and real-world videos demonstrate the superiority of the proposed approaches over the existing state-of-the-art approaches.Comment: To appear in IEEE TI
    • …
    corecore