1,947 research outputs found

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    A Novel Framework for Highlight Reflectance Transformation Imaging

    Get PDF
    We propose a novel pipeline and related software tools for processing the multi-light image collections (MLICs) acquired in different application contexts to obtain shape and appearance information of captured surfaces, as well as to derive compact relightable representations of them. Our pipeline extends the popular Highlight Reflectance Transformation Imaging (H-RTI) framework, which is widely used in the Cultural Heritage domain. We support, in particular, perspective camera modeling, per-pixel interpolated light direction estimation, as well as light normalization correcting vignetting and uneven non-directional illumination. Furthermore, we propose two novel easy-to-use software tools to simplify all processing steps. The tools, in addition to support easy processing and encoding of pixel data, implement a variety of visualizations, as well as multiple reflectance-model-fitting options. Experimental tests on synthetic and real-world MLICs demonstrate the usefulness of the novel algorithmic framework and the potential benefits of the proposed tools for end-user applications.Terms: "European Union (EU)" & "Horizon 2020" / Action: H2020-EU.3.6.3. - Reflective societies - cultural heritage and European identity / Acronym: Scan4Reco / Grant number: 665091DSURF project (PRIN 2015) funded by the Italian Ministry of University and ResearchSardinian Regional Authorities under projects VIGEC and Vis&VideoLa

    Light field image processing: an overview

    Get PDF
    Light field imaging has emerged as a technology allowing to capture richer visual information from our world. As opposed to traditional photography, which captures a 2D projection of the light in the scene integrating the angular domain, light fields collect radiance from rays in all directions, demultiplexing the angular information lost in conventional photography. On the one hand, this higher dimensional representation of visual data offers powerful capabilities for scene understanding, and substantially improves the performance of traditional computer vision problems such as depth sensing, post-capture refocusing, segmentation, video stabilization, material classification, etc. On the other hand, the high-dimensionality of light fields also brings up new challenges in terms of data capture, data compression, content editing, and display. Taking these two elements together, research in light field image processing has become increasingly popular in the computer vision, computer graphics, and signal processing communities. In this paper, we present a comprehensive overview and discussion of research in this field over the past 20 years. We focus on all aspects of light field image processing, including basic light field representation and theory, acquisition, super-resolution, depth estimation, compression, editing, processing algorithms for light field display, and computer vision applications of light field data

    Kinect Range Sensing: Structured-Light versus Time-of-Flight Kinect

    Full text link
    Recently, the new Kinect One has been issued by Microsoft, providing the next generation of real-time range sensing devices based on the Time-of-Flight (ToF) principle. As the first Kinect version was using a structured light approach, one would expect various differences in the characteristics of the range data delivered by both devices. This paper presents a detailed and in-depth comparison between both devices. In order to conduct the comparison, we propose a framework of seven different experimental setups, which is a generic basis for evaluating range cameras such as Kinect. The experiments have been designed with the goal to capture individual effects of the Kinect devices as isolatedly as possible and in a way, that they can also be adopted, in order to apply them to any other range sensing device. The overall goal of this paper is to provide a solid insight into the pros and cons of either device. Thus, scientists that are interested in using Kinect range sensing cameras in their specific application scenario can directly assess the expected, specific benefits and potential problem of either device.Comment: 58 pages, 23 figures. Accepted for publication in Computer Vision and Image Understanding (CVIU

    Fully Reversed Engineering: streamlining 3D component digitization, modification, and reproduction

    Get PDF
    The availability of rapid prototyping enhances a designer’s creativity and speed, enabling quicker development of new products. However, because this process relies heavily on CAD models it can often be time costly and inefficient when a component is needed urgently in the field. This paper proposes a method to seamlessly integrate the digitization of existing objects with the rapid prototyping process. Our technique makes use of multiple structured-light techniques in conjunction with photogrammetry to build a more efficient means of product development. This combination of methods allows our developed application to rapidly scan an entire object using inexpensive hardware

    Real-time 3D reconstruction of non-rigid shapes with a single moving camera

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/This paper describes a real-time sequential method to simultaneously recover the camera motion and the 3D shape of deformable objects from a calibrated monocular video. For this purpose, we consider the Navier-Cauchy equations used in 3D linear elasticity and solved by finite elements, to model the time-varying shape per frame. These equations are embedded in an extended Kalman filter, resulting in sequential Bayesian estimation approach. We represent the shape, with unknown material properties, as a combination of elastic elements whose nodal points correspond to salient points in the image. The global rigidity of the shape is encoded by a stiffness matrix, computed after assembling each of these elements. With this piecewise model, we can linearly relate the 3D displacements with the 3D acting forces that cause the object deformation, assumed to be normally distributed. While standard finite-element-method techniques require imposing boundary conditions to solve the resulting linear system, in this work we eliminate this requirement by modeling the compliance matrix with a generalized pseudoinverse that enforces a pre-fixed rank. Our framework also ensures surface continuity without the need for a post-processing step to stitch all the piecewise reconstructions into a global smooth shape. We present experimental results using both synthetic and real videos for different scenarios ranging from isometric to elastic deformations. We also show the consistency of the estimation with respect to 3D ground truth data, include several experiments assessing robustness against artifacts and finally, provide an experimental validation of our performance in real time at frame rate for small mapsPeer ReviewedPostprint (author's final draft

    ENHANCEMENTS TO THE MODIFIED COMPOSITE PATTERN METHOD OF STRUCTURED LIGHT 3D CAPTURE

    Get PDF
    The use of structured light illumination techniques for three-dimensional data acquisition is, in many cases, limited to stationary subjects due to the multiple pattern projections needed for depth analysis. Traditional Composite Pattern (CP) multiplexing utilizes sinusoidal modulation of individual projection patterns to allow numerous patterns to be combined into a single image. However, due to demodulation artifacts, it is often difficult to accurately recover the subject surface contour information. On the other hand, if one were to project an image consisting of many thin, identical stripes onto the surface, one could, by isolating each stripe center, recreate a very accurate representation of surface contour. But in this case, recovery of depth information via triangulation would be quite difficult. The method described herein, Modified Composite Pattern (MCP), is a conjunction of these two concepts. Combining a traditional Composite Pattern multiplexed projection image with a pattern of thin stripes allows for accurate surface representation combined with non-ambiguous identification of projection pattern elements. In this way, it is possible to recover surface depth characteristics using only a single structured light projection. The technique described utilizes a binary structured light projection sequence (consisting of four unique images) modulated according to Composite Pattern methodology. A stripe pattern overlay is then applied to the pattern. Upon projection and imaging of the subject surface, the stripe pattern is isolated, and the composite pattern information demodulated and recovered, allowing for 3D surface representation. In this research, the MCP technique is considered specifically in the context of a Hidden Markov Process Model. Updated processing methodologies explained herein make use of the Viterbi algorithm for the purpose of optimal analysis of MCP encoded images. Additionally, we techniques are introduced which, when implemented, allow fully automated processing of the Modified Composite Pattern image

    3D Face Modelling, Analysis and Synthesis

    Get PDF
    Human faces have always been of a special interest to researchers in the computer vision and graphics areas. There has been an explosion in the number of studies around accurately modelling, analysing and synthesising realistic faces for various applications. The importance of human faces emerges from the fact that they are invaluable means of effective communication, recognition, behaviour analysis, conveying emotions, etc. Therefore, addressing the automatic visual perception of human faces efficiently could open up many influential applications in various domains, e.g. virtual/augmented reality, computer-aided surgeries, security and surveillance, entertainment, and many more. However, the vast variability associated with the geometry and appearance of human faces captured in unconstrained videos and images renders their automatic analysis and understanding very challenging even today. The primary objective of this thesis is to develop novel methodologies of 3D computer vision for human faces that go beyond the state of the art and achieve unprecedented quality and robustness. In more detail, this thesis advances the state of the art in 3D facial shape reconstruction and tracking, fine-grained 3D facial motion estimation, expression recognition and facial synthesis with the aid of 3D face modelling. We give a special attention to the case where the input comes from monocular imagery data captured under uncontrolled settings, a.k.a. \textit{in-the-wild} data. This kind of data are available in abundance nowadays on the internet. Analysing these data pushes the boundaries of currently available computer vision algorithms and opens up many new crucial applications in the industry. We define the four targeted vision problems (3D facial reconstruction &\& tracking, fine-grained 3D facial motion estimation, expression recognition, facial synthesis) in this thesis as the four 3D-based essential systems for the automatic facial behaviour understanding and show how they rely on each other. Finally, to aid the research conducted in this thesis, we collect and annotate a large-scale videos dataset of monocular facial performances. All of our proposed methods demonstarte very promising quantitative and qualitative results when compared to the state-of-the-art methods
    • …
    corecore