231 research outputs found

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Control and filtering of time-varying linear systems via parameter dependent Lyapunov functions

    Get PDF
    The main contribution of this dissertation is to propose conditions for linear filter and controller design, considering both robust and parameter dependent structures, for discrete time-varying systems. The controllers, or filters, are obtained through the solution of optimization problems, formulated in terms of bilinear matrix inequalities, using a method that alternates convex optimization problems described in terms of linear matrix inequalities. Both affine and multi-affine in different instants of time (path dependent) Lyapunov functions were used to obtain the design conditions, as well as extra variables introduced by the Finsler\u27s lemma. Design problems that take into account an H-infinity guaranteed cost were investigated, providing robustness with respect to unstructured uncertainties. Numerical simulations show the efficiency of the proposed methods in terms of H-infinity performance when compared with other strategies from the literature

    Robust Constrained Model Predictive Control using Linear Matrix Inequalities

    Get PDF
    The primary disadvantage of current design techniques for model predictive control (MPC) is their inability to deal explicitly with plant model uncertainty. In this paper, we present a new approach for robust MPC synthesis which allows explicit incorporation of the description of plant uncertainty in the problem formulation. The uncertainty is expressed both in the time domain and the frequency domain. The goal is to design, at each time step, a state-feedback control law which minimizes a "worst-case" infinite horizon objective function, subject to constraints on the control input and plant output. Using standard techniques, the problem of minimizing an upper bound on the "worst-case" objective function, subject to input and output constraints, is reduced to a convex optimization involving linear matrix inequalities (LMIs). It is shown that the feasible receding horizon state-feedback control design robustly stabilizes the set of uncertain plants under consideration. Several extensions, such as application to systems with time-delays and problems involving constant set-point tracking, trajectory tracking and disturbance rejection, which follow naturally from our formulation, are discussed. The controller design procedure is illustrated with two examples. Finally, conclusions are presented

    Stabilization of markovian systems via probability rate synthesis and output feedback

    Get PDF
    This technical note is concerned with the stabilization problem of Markovian jump linear systems via designing switching probability rate matrices and static output-feedback gains. A novel necessary and sufficient condition is established to characterize the switching probability rate matrices that guarantee the mean square stability of Markovian jump linear systems. Based on this, a necessary and sufficient condition is provided for the existence of desired controller gains and probability rate matrices. Extensions to the polytopic uncertain case are also provided. All the conditions are formulated in terms of linear matrix inequalities with some equality constraints, which can be solved by two modified cone complementarity linearization algorithms. Examples are given to show the effectiveness of the proposed method. © 2010 IEEE.published_or_final_versio

    Robust H∞ filtering for uncertain 2-D continuous systems

    Get PDF
    This paper considers the problem of robust H∞ filtering for uncertain two-dimensional (2-D) continuous systems described by the Roesser state-space model. The parameter uncertainties are assumed to be norm-bounded in both the state and measurement equations. The purpose is the design of a 2-D continuous filter such that for all admissible uncertainties, the error system is asymptotically stable, and the H∞ norm of the transfer function, from the noise signal to the estimation error, is below a prespecified level. A sufficient condition for the existence of such filters is obtained in terms of a set of linear matrix inequalities (LMIs). When these LMIs are feasible, an explicit expression of a desired H∞ filter is given. Finally, a simulation example is provided to demonstrate the effectiveness of the proposed method. © 2005 IEEE.published_or_final_versio

    Mixed H2/H1 Filtering for Ploytopic Discrete-time Systems with Homogeneous Polynomials

    Get PDF
    This paper investigates the robust mixed H2/H1 filtering problem for linear time-invariant (LTI) discrete systems with polytopic uncertainty. The structured polynomially parameter-dependent method is used, which is based on homogeneous polynomially parameter-dependent matrices of arbitrary degree. The proposed method includes results in the quadratic framework and the linearly parameter-dependent framework as special cases for zeroth degree and first degree, respectively. A numerical example illustrates the feasibility and advantage of the proposed methods

    Distributed H-infinity filtering for polynomial nonlinear stochastic systems in sensor networks

    Get PDF
    Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, the distributed H1 filtering problem is addressed for a class of polynomial nonlinear stochastic systems in sensor networks. For a Lyapunov function candidate whose entries are polynomials, we calculate its first- and second-order derivatives in order to facilitate the use of Itos differential role. Then, a sufficient condition for the existence of a feasible solution to the addressed distributed H1 filtering problem is derived in terms of parameter-dependent linear matrix inequalities (PDLMIs). For computational convenience, these PDLMIs are further converted into a set of sums of squares (SOSs) that can be solved effectively by using the semidefinite programming technique. Finally, a numerical simulation example is provided to demonstrate the effectiveness and applicability of the proposed design approach.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., the National 973 Program of China under Grant 2009CB320600, the National Natural Science Foundation of China under Grant 60974030 and the Alexander von Humboldt Foundation of Germany
    corecore