61,824 research outputs found

    Automation and robotics for the Space Exploration Initiative: Results from Project Outreach

    Get PDF
    A total of 52 submissions were received in the Automation and Robotics (A&R) area during Project Outreach. About half of the submissions (24) contained concepts that were judged to have high utility for the Space Exploration Initiative (SEI) and were analyzed further by the robotics panel. These 24 submissions are analyzed here. Three types of robots were proposed in the high scoring submissions: structured task robots (STRs), teleoperated robots (TORs), and surface exploration robots. Several advanced TOR control interface technologies were proposed in the submissions. Many A&R concepts or potential standards were presented or alluded to by the submitters, but few specific technologies or systems were suggested

    Machine intelligence and robotics: Report of the NASA study group. Executive summary

    Get PDF
    A brief overview of applications of machine intelligence and robotics in the space program is given. These space exploration robots, global service robots to collect data for public service use on soil conditions, sea states, global crop conditions, weather, geology, disasters, etc., from Earth orbit, space industrialization and processing technologies, and construction of large structures in space. Program options for research, advanced development, and implementation of machine intelligence and robot technology for use in program planning are discussed. A vigorous and long-range program to incorporate and keep pace with state of the art developments in computer technology, both in spaceborne and ground-based computer systems is recommended

    A novel strategy for exploration with multiple robots

    Get PDF
    The present paper develops a novel strategy for the exploration of an unknown environment with a multi-robot system. Contrary to most exploration problems, the topographical properties of the space need not be mapped. The algorithm we propose is inspired by methods used for complete coverage of an area, where all free space has to be physically covered by all robots. In the present paper it is required that the entire free space is covered by the sensors of the robots, with a certainty of 100%. This weaker requirement enables us to scan more space in less time, compared to complete coverage algorithms. Moreover the shape of the robot formation adjusts itself to situations where obstacles, narrow spaces, etc. have to be passed. Communication between the robots is restricted to line-of-sight and to a maximum interdistance between robots. A direct application of the algorithm is mine field clearance

    Towards Supervising Remote Dexterous Robots Across Time Delay

    Get PDF
    The President s Vision for Space Exploration, laid out in 2004, relies heavily upon robotic exploration of the lunar surface in early phases of the program. Prior to the arrival of astronauts on the lunar surface, these robots will be required to be controlled across space and time, posing a considerable challenge for traditional telepresence techniques. Because time delays will be measured in seconds, not minutes as is the case for Mars Exploration, uploading the plan for a day seems excessive. An approach for controlling dexterous robots under intermediate time delay is presented, in which software running within a ground control cockpit predicts the intention of an immersed robot supervisor, then the remote robot autonomously executes the supervisor s intended tasks. Initial results are presented

    Paper Session I-A - A Historical Perspective of Robotics Development in the Space Station Program

    Get PDF
    The research field in robotics has grown tremendously in the 80ís because of the technology push from automobile industry and from the space station program. While the automobile industry pushed for implementation of robots to perform repetitive tasks in the assembly line, the space station program pushed for development of either large-scale and light weight tele-operative robots, or intelligent robots for extravehicular activities and exploration of distant planets. Recently, more knowledge of assembly in space became available that it seemed inevitable for a need of intelligent robots in the assembly sequence as well as in operation of the space station. This paper presents a review of the original goal for a space-oriented robotics research program, the historical aspect of robotics development in the space program, and the resulting current robotics technology

    3D exploration and navigation with optimal-RRT planners for ground robots in indoor incidents

    Get PDF
    Navigation and exploration in 3D environments is still a challenging task for autonomous robots that move on the ground. Robots for Search and Rescue missions must deal with unstructured and very complex scenarios. This paper presents a path planning system for navigation and exploration of ground robots in such situations. We use (unordered) point clouds as the main sensory input without building any explicit representation of the environment from them. These 3D points are employed as space samples by an Optimal-RRTplanner (RRT ∗ ) to compute safe and efficient paths. The use of an objective function for path construction and the natural exploratory behaviour of the RRT ∗ planner make it appropriate for the tasks. The approach is evaluated in different simulations showing the viability of autonomous navigation and exploration in complex 3D scenarios
    corecore