2,049 research outputs found

    Technology enablers for the implementation of Industry 4.0 to traditional manufacturing sectors: A review

    Get PDF
    The traditional manufacturing sectors (footwear, textiles and clothing, furniture and toys, among others) are based on small and medium enterprises with limited capacity on investing in modern production technologies. Although these sectors rely heavily on product customization and short manufacturing cycles, they are still not able to take full advantage of the fourth industrial revolution. Industry 4.0 surfaced to address the current challenges of shorter product life-cycles, highly customized products and stiff global competition. The new manufacturing paradigm supports the development of modular factory structures within a computerized Internet of Things environment. With Industry 4.0, rigid planning and production processes can be revolutionized. However, the computerization of manufacturing has a high degree of complexity and its implementation tends to be expensive, which goes against the reality of SMEs that power the traditional sectors. This paper reviews the main scientific-technological advances that have been developed in recent years in traditional sectors with the aim of facilitating the transition to the new industry standard.This research was supported by the Spanish Research Agency (AEI) and the European Regional Development Fund (ERDF) under the project CloudDriver4Industry TIN2017-89266-R

    Robotic manipulation for the shoe-packaging process

    Full text link
    [EN] This paper presents the integration of a robotic system in a human-centered environment, as it can be found in the shoe manufacturing industry. Fashion footwear is nowadays mainly handcrafted due to the big amount of small production tasks. Therefore, the introduction of intelligent robotic systems in this industry may contribute to automate and improve the manual production steps, such us polishing, cleaning, packaging, and visual inspection. Due to the high complexity of the manual tasks in shoe production, cooperative robotic systems (which can work in collaboration with humans) are required. Thus, the focus of the robot lays on grasping, collision detection, and avoidance, as well as on considering the human intervention to supervise the work being performed. For this research, the robot has been equipped with a Kinect camera and a wrist force/ torque sensor so that it is able to detect human interaction and the dynamic environment in order to modify the robot¿s behavior. To illustrate the applicability of the proposed approach, this work presents the experimental results obtained for two actual platforms, which are located at different research laboratories, that share similarities in their morphology, sensor equipment and actuation system.This work has been partly supported by the Ministerio de Economia y Competitividad of the Spanish Government (Key No.: 0201603139 of Invest in Spain program and Grant No. RTC-2016-5408-6) and by the Deutscher Akademischer Austauschdienst (DAAD) of the German Government (Projekt-ID 54368155).Gracia Calandin, LI.; Perez-Vidal, C.; Mronga, D.; Paco, JD.; Azorin, J.; Gea, JD. (2017). Robotic manipulation for the shoe-packaging process. The International Journal of Advanced Manufacturing Technology. 92(1-4):1053-1067. https://doi.org/10.1007/s00170-017-0212-6S10531067921-4Pedrocchi N, Villagrossi E, Cenati C, Tosatti LM (2017) Design of fuzzy logic controller of industrial robot for roughing the uppers of fashion shoes. Int J Adv Manuf Technol 77(5):939–953Hinojo-Perez JJ, Davia-Aracil M, Jimeno-Morenilla A, Sanchez-Romero L, Salas F (2016) Automation of the shoe last grading process according to international sizing systems. Int J Adv Manuf Technol 85(1):455–467Dura-Gil JV, Ballester-Fernandez A, Cavallaro M, Chiodi A, Ballarino A, von Arnim V., Brondi C, Stellmach D (2016) New technologies for customizing products for people with special necessities: project fashion-able. Int J Comput Integr Manuf. In Press, doi: 10.1080/0951192X.2016.1145803Jatta F, Zanoni L, Fassi I, Negri S (2004) A roughing/cementing robotic cell for custom made shoe manufacture. Int J Comput Integr Manuf 17(7):645–652Nemec B, Zlajpah L (2008) Robotic cell for custom finishing operations. Int J Comput Integr Manuf 21(1):33–42Molfino R, et al (2004) Modular, reconfigurable prehensor for grasping and handling limp materials in the shoe industry. In: IMS international forum, CernobbioIntelishoe - integration and linking of shoe and auxiliary industries. 5Th FPSpecial shoes movement. 7th FP, NMP-2008-SME-2-R.229261, http://www.sshoes.euVilaca JL, Fonseca J (2007) A new software application for footwear industry. In: IEEE international symposium on intelligent signal processing WISP 2007, pp 1–6Custom, environment and comfort made shoe. 6TH FP [2004-2008]Framework of integrated technologies for user centred products. Grant agreement no.: CP-TP 229336-2. NMP2-SE-2009-229336 FIT4U -7TH FPRobofoot project website. http://www.robofoot.eu/ . Accessed 2016/ 09/16Montiel E (2007) Customization in the footwear industry. In: proceedings of the MIT congress on mass customizationSucan I, Kavraki LE (2012) A sampling-based tree planner for systems with complex dynamics, vol 28Kuffner JJ Jr, LaValle SM (2000) Rrt-connect: an efficient approach to single-query path planning. In: Proceedings of the IEEE international conference on robotics and automation, 2000. ICRA ’00, vol 2, pp 995–1001Ratliff N, Zucker M, Andrew Bagnell J, Srinivasa S (2009) Chomp: gradient optimization techniques for efficient motion planning. In: IEEE international conference on robotics and automation, 2009. ICRA ’09, pp 489–494Brock O, Khatib O (1997) Elastic strips: real-time path modification for mobile manipulationKroger T (2011) Opening the door to new sensor-based robot applications #x2014;the reflexxes motion libraries. In: 2011 IEEE international conference on robotics and automation (ICRA), pp 1–4Berg J, Ferguson D, Kuffner J (2006) Anytime path planning and replanning in dynamic environments. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 2366–2371Berenson D, Abbeel P, Goldberg K (2012) A robot path planning framework that learns from experience. In: IEEE international conference on robotics and automation. IEEE, pp 3671–3678Bischoff R, Kurth J, Schreiber G, Koeppe R, Albu-Schaeffer A, Beyer A, Eiberger O, Haddadin S, Stemmer A, Grunwald G, Hirzinger G (2010) The kuka-dlr lightweight robot arm — a new reference platform for robotics research and manufacturing. In: Robotics (ISR), 2010 41st international symposium on and 2010 6th German conference on robotics (ROBOTIK), pp 1–8Rooks B (2006) The harmonious robot. Industrial Robot-an International Journal 33:125–130Vahrenkamp N, Wieland S, Azad P, Gonzalez D, Asfour T, Dillmann R (2008) Visual servoing for humanoid grasping and manipulation tasks. In: 8th IEEE-RAS international conference on humanoid robots, 2008, Humanoids 2008, pp 406–412Pieters RS, et al. (2012) Direct trajectory generation for vision-based obstacle avoidance. In: Proceedings of the 2012 IEEE/RSJ international conference on intelligent robots and systemsKinect for windows sensor components and specifications, website. http://msdn.microsoft.com/en-us/library/jj131033.aspx . Accessed 2016/09/16Jatta F, Zanoni L, Fassi I, Negri S (2004) A roughing cementing robotic cell for custom made shoe manufacture. Int J Comput Integr Manuf 17(7):645–652Maurtua I, Ibarguren A, Tellaeche A (2012) Robotics for the benefit of footwear industry. In: International conference on intelligent robotics and applications. Springer, Berlin, pp 235–244Arkin RC (1998) Behavior-based robotics. MIT PressNilsson NJ (1980) Principles of artificial intelligence. Morgan KaufmannAsada H, Slotine J-JE (1986) Robot analysis and control. WileyROS official web page. http://www.ros.org , (Accessed on 2017/ 02/03)Langmann B, Hartmann K, Loffeld O (2012) Depth camera technology comparison and performance evaluation. In: 1st international conference on pattern recognition applications and methods, pp 438–444The player project. free software tools for robot and sensor applications. http://playerstage.sourceforge.net/ , (Accessed on 2017/ 02/03)Yet another robot platform (YARP). http://www.yarp.it/ , (Accessed on 2017/02/03)The OROCOS project. smarter control in robotics and automation. http://www.orocos.org/ , (Accessed on 2017/02/03)CARMEN: Robot navigation toolkit. http://carmen.sourceforge.net/ , (Accessed on 2017/02/03)ORCA: Components for robotics. http://orca-robotics.sourceforge.net/ , (Accessed on 2017/02/03)MOOS: Mission oriented operating suite. http://www.robots.ox.ac.uk/mobile/MOOS/wiki/pmwiki.php/Main/HomePage , (Accessed on 2017/02/03)Microsoft robotics studio. https://www.microsoft.com/en-us/download/details.aspx?id=29081 , (Accessed on 2017/02/03)Pr2 ros website. http://www.ros.org/wiki/Robots/PR2 . Accessed 2016/09/16Care-o-bot 3 ros website. http://www.ros.org/wiki/Robots/Care-O-bot . Accessed 2016/09/16Aila, mobile dual-arm manipulation, website. http://robotik.dfki-bremen.de/de/forschung/robotersysteme/aila.html . Accessed 2016/09/16Package libpcan documentation, website. http://www.ros.org/wiki/libpcan . Accessed 2016/09/16Pcan driver for linux, user manual. http://www.peak-system.com . Document version 7.1 (2011-03-21)Pcan driver for linux, user manual. http://wiki.ros.org/schunk_powercube_chain . Accessed 2016/09/16Ros nodes documentation, website. http://www.ros.org/wiki/Nodes . Accessed 2016/09/16Ros messages documentation, website. http://www.ros.org/wiki/Messages . Accessed 2016/09/16Ros topics documentation, website. http://www.ros.org/wiki/Topics . Accessed 2016/09/16Ros services documentation, website. http://www.ros.org/wiki/Services . Accessed 2016/09/16Yaml files officials website. http://www.yaml.org/ . Accessed 2016/ 09/16Ros robot model (urdf) documentation website. http://www.ros.org/wiki/urdf . Accessed 2016/09/16Point cloud library (pcl), website. http://www.pointclouds.org/ . Accessed 2016/09/16Arm navigation ros stack, website. http://wiki.ros.org/arm_navigation . Accessed 2016/09/16Hornung A, Wurm KM, Bennewitz M, Stachniss C, Burgard W (2013) Octomap: an efficient probabilistic 3d mapping framework based on octrees Autonomous RobotsOrocos kdl documentation, website. http://www.orocos.org/kdl . Accessed 2016/09/16Ioan A, Şucan MM, Kavraki LE (2012) The open motion planning library, vol 19. http://ompl.kavrakilab.orgWaibel M, Beetz M, Civera J, D’Andrea R, Elfring J, Galvez-Lopez D, Haussermann K, Janssen R, Montiel JMM, Perzylo A, Schiessle B, Tenorth M, Zweigle O, van de Molengraft R (2011) Roboearth. IEEE Robot Autom Mag 18(2):69–82Simox toolbox. http://simox.sourceforge.net/ . Accessed 2016/09/16Moreels P, Perona P (2007) Evaluation of features detectors and descriptors based on 3d objects. Int J Comput Vis 73:263–284Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, 2001. CVPR 2001, vol 1Teuliere C, Marchand E, Eck L (2010) Using multiple hypothesis in model-based tracking. In: 2010 IEEE international conference on robotics and automation (ICRA), pp 4559–4565Moulianitis VC, Dentsoras AJ, Aspragathos NA (1999) A knowledge-based system for the conceptual design of grippers for handling fabrics. Artif Intell Eng Des Anal Manuf 13(1):13–25Davis S, Tsagarakis NG, Caldwell DG (2008) The initial design and manufacturing process of a low cost hand for the robot icub. In: 8th IEEE-RAS international conference on humanoid robots, pp 40–45Cerruti G, Chablat D, Gouaillier D, Sakka S (2017) Design method for an anthropomorphic hand able to gesture and grasp. In: IEEE international conference on robotics and automation. IEEE, pp 3671–367

    Virtual R&D Teams: A potential growth of education-industry collaboration

    Get PDF
    Introduction: With the advent of the global economy and high-speed Internet, online collaboration is fast becoming the norm in education and industry 1. Information technology (IT) creates many new inter-relationships among businesses, expands the scope of industries in which a company must compete to achieve the competitive advantage. Information systems and technology allow companies to coordinate their activities in distant geographic locations 2. IT is providing the infrastructure necessary to support the development of new collaboration forms among industry and education. Virtual research and development (R&D) teams represent one such relational form, one that could revolutionize the workplace and provide organizations with unprecedented levels of flexibility and responsiveness 3-4

    Estrategias y tecnologías para la colaboración segura entre personas y robots en entornos industriales

    Get PDF
    383 p.En este trabajo se presentan diferentes contribuciones encaminadas a facilitar el desarrollo de soluciones robóticas colaborativas fáciles de usar, flexibles y seguras.Fáciles de usar mediante la utilización de tecnologías semánticas que permiten combinar dos mecanismos de interacción, los gestos y la voz, La contribución incluye, además, el desarrollo de la tecnología necesaria para el reconocimiento de gestos.La contribución en el campo de la seguridad se ha centrado en la definición de arquitecturas y estrategias de seguridad, así como en el desarrollo de tecnologías que permiten implementar el modo SSM: el seguimiento de personas y la monitorización de proximidad. Además se ha experimentado con potenciales usuarios de la robótica colaborativa para conocer el grado de aceptación de las diferentes tecnologías desarrolladas, tanto para la seguridad como para la interacción Finalmente se presentan las contribuciones encaminadas a dotar a los robots de capacidades de percepción que les doten de la flexibilidad necesaria para adaptarse a las condiciones cambiantes del entorno

    #MDXPD Product Design 2018

    Get PDF

    Virtual R&D Teams: A potential growth of education-industry collaboration

    Get PDF
    In this paper, we present our more than two years research experiences on virtual R&D teams in small and medium-sized enterprises (SMEs) and draws conclusions, giving special attention to the structure of virtual teams required to support education-industry collaboration. We report the relevant results of an online survey study. The online questionnaire was emailed by using a simple random sampling method to 947 manufacturing SMEs. The findings of this study show that SMEs in Malaysia and Iran are willing to use virtual teams for collaboration and the platform for industry-education collaboration is ready and distance between team members or differences in time zones, are not barriers to industry-education collaborations.Collaboration, virtual teams, SMEs, Education

    Raising new opportunities for the Next Economy by exploring variable user needs for Computational Co-Design

    Get PDF
    Digital Fabrication promises to revolutionize manufacturing, bringing both economic, social and environmental benefits. Combined with Computational CoDesign it can raise the creative potential of both designers and users. However, today the productive use of Digital Fabrication and Computational Design requires significant effort and specialised know-how, so valorising these practices calls for the identification of the application fields that benefit the most from them. This paper presents a tool for helping the discovery of design opportunities across comprehensive, ramified lists of product categories, where designers can identify possible points of intervention. The web-based tool allows the rapid evaluation of numerous product categories according to an extendable set of factors and inspiring questions related to the necessity of personalization, aiming to stimulate designers to consider unexpected frontiers of innovation. Beyond the scope of the research project, this tool has the potential to assist designers in finding applications also for other emerging technologies in a structured and scalable wa

    Trademarks and Textual Data: A Broader Perspective on Innovation = Marques et données textuelles : Une perspective élargie sur l’innovation

    Get PDF
    Patente messen häufig technische Innovationen, während Handelsmarken Low-Tech und Dienstleistungen abdecken. In dieser Arbeit werden Textdaten von Marken untersucht, um verschiedene Rechte des geistigen Eigentums zu kombinieren. Textdaten ermöglichen zum Beispiel die Analyse großer Datenmengen, die Kombination verschiedener Quellen und datengestützte Erkenntnisse. Die Kombination von Handelsmarken und Patenten in den Bereichen Robotik (Hightech) und Schuhe (Lowtech) bietet eine breitere Abdeckung und Details zu Innovationen, die je nach Sektor variieren. Im Musikinstrumentensektor verdeutlichen Textdaten zu Marken, Patenten und Designs den laufenden technologischen Wandel. Patente beziehen sich auf Daten und Digitalisierungsthemen und werden von High-Tech-Firmen genutzt, während Handelsmarken die Signalverarbeitung und Videospiele von Spielfirmen abdecken. Designs fungieren als verbindendes Element. Eine Differenzierung zwischen Unternehmen und Tätigkeitsbereichen ist möglich. Zusammenfassend zeigt die These, dass die Integration von textuellen Markendaten die Innovationsabdeckung erweitert

    Automation of product packaging for industrial applications

    Full text link
    [EN] This work presents a robotic-based solution devised to automate the product packaging in industrial environments. Although the proposed approach is illustrated for the case of the shoe industry, it applies to many other products requiring similar packaging processes. The main advantage obtained with the automated task is that productivity could be significantly increased. The key algorithms for the developed robot system are: object detection using a computer vision system; object grasping; trajectory planning with collision avoidance; and operator interaction using a force/torque sensor. All these algorithms have been experimentally tested in the laboratory to show the effectiveness and applicability of the proposed approach.This work has been partly supported by Ministerio de Economia y Competitividad of the Spanish Government [Grant No. RTC201654086 and PRI-AIBDE-2011-1219], by the Deutscher Akademischer Austauschdienst (DAAD) of the German Government (Projekt-ID 54368155) and by ROBOFOOT project [Grant No. 260159] of the European Commission.Perez-Vidal, C.; Gracia, L.; De Paco, J.; Wirkus, M.; Azorin, J.; De Gea, J. (2018). Automation of product packaging for industrial applications. International Journal of Computer Integrated Manufacturing. 31(2):129-137. https://doi.org/10.1080/0951192X.2017.1369165S12913731
    • …
    corecore