33,644 research outputs found

    Introduction to the International Handbook on Responsible Innovation

    Get PDF
    he Handbook constitutes a global resource for the fast growing interdisciplinary research and policy communities addressing the challenge of driving innovation towards socially desirable outcomes. This book brings together well-known authors from the US, Europe, Asia and South-Africa who develop conceptual, ethical and regional perspectives on responsible innovation as well as exploring the prospects for further implementation of responsible innovation in emerging technological practices ranging from agriculture and medicine, to nanotechnology and robotics. The emphasis is on the socio-economic and normative dimensions of innovation including issues of social risk and sustainability

    Robots That Do Not Avoid Obstacles

    Full text link
    The motion planning problem is a fundamental problem in robotics, so that every autonomous robot should be able to deal with it. A number of solutions have been proposed and a probabilistic one seems to be quite reasonable. However, here we propose a more adoptive solution that uses fuzzy set theory and we expose this solution next to a sort survey on the recent theory of soft robots, for a future qualitative comparison between the two.Comment: To appear in the Handbook of Nonlinear Analysis, Edt Th. Rassias, Springe

    Neural Task Programming: Learning to Generalize Across Hierarchical Tasks

    Full text link
    In this work, we propose a novel robot learning framework called Neural Task Programming (NTP), which bridges the idea of few-shot learning from demonstration and neural program induction. NTP takes as input a task specification (e.g., video demonstration of a task) and recursively decomposes it into finer sub-task specifications. These specifications are fed to a hierarchical neural program, where bottom-level programs are callable subroutines that interact with the environment. We validate our method in three robot manipulation tasks. NTP achieves strong generalization across sequential tasks that exhibit hierarchal and compositional structures. The experimental results show that NTP learns to generalize well to- wards unseen tasks with increasing lengths, variable topologies, and changing objectives.Comment: ICRA 201
    • …
    corecore