5,955 research outputs found

    Flora robotica -- An Architectural System Combining Living Natural Plants and Distributed Robots

    Full text link
    Key to our project flora robotica is the idea of creating a bio-hybrid system of tightly coupled natural plants and distributed robots to grow architectural artifacts and spaces. Our motivation with this ground research project is to lay a principled foundation towards the design and implementation of living architectural systems that provide functionalities beyond those of orthodox building practice, such as self-repair, material accumulation and self-organization. Plants and robots work together to create a living organism that is inhabited by human beings. User-defined design objectives help to steer the directional growth of the plants, but also the system's interactions with its inhabitants determine locations where growth is prohibited or desired (e.g., partitions, windows, occupiable space). We report our plant species selection process and aspects of living architecture. A leitmotif of our project is the rich concept of braiding: braids are produced by robots from continuous material and serve as both scaffolds and initial architectural artifacts before plants take over and grow the desired architecture. We use light and hormones as attraction stimuli and far-red light as repelling stimulus to influence the plants. Applied sensors range from simple proximity sensing to detect the presence of plants to sophisticated sensing technology, such as electrophysiology and measurements of sap flow. We conclude by discussing our anticipated final demonstrator that integrates key features of flora robotica, such as the continuous growth process of architectural artifacts and self-repair of living architecture.Comment: 16 pages, 12 figure

    A new methodology for designing PID controllers

    Get PDF
    It is known that it is impossible to select fixed gains for a PD controller that will critically damp the response to disturbances for all configurations of a given robot system. Because of this the potential for overshoot is always present and cannot be avoided unless the system is severely overdamped. This is not necessarily a practical solution and can be an economically unacceptable approach. On the other hand, however, if overshoot is permissible to some degree for some systems in the case of conventional Serial robots it is still prohibited in the case of Parallel robots as it may easily bring the robot to one of its possible singular configurations, causing damage to the system. This paper introduces a new algorithm for the design of PD controllers that ensures uniform and fast dynamic responses, which are free from overshoots for all robot configurations. The technique also satisfies general stability requirements for the system

    Evaluation method of the innovation project global efficiency

    Get PDF
    A complete system of indexes to evaluate the global efficiency of a new product development project must approach at least the following perspectives: the financial performances of the project; the project's value; the technical performances of the project; the efficiency of research and development activities of the project; the capacity of fitting in the estimated cost and duration of activities; the degree of integration between the R&D and production activities; the degree of integration between the R&D and marketing activities. Therefore, in this paper is drawn up a method for new product development projects evaluation, based on those seven perspectives.innovation project, evaluation method, value, financial performances

    Dynamics of the Orthoglide parallel robot

    Get PDF
    Recursive matrix relations for kinematics and dynamics of the Orthoglide parallel robot having three concurrent prismatic actuators are established in this paper. These are arranged according to the Cartesian coordinate system with fixed orientation, which means that the actuating directions are normal to each other. Three identical legs connecting to the moving platform are located on three planes being perpendicular to each other too. Knowing the position and the translation motion of the platform, we develop the inverse kinematics problem and determine the position, velocity and acceleration of each element of the robot. Further, the principle of virtual work is used in the inverse dynamic problem. Some matrix equations offer iterative expressions and graphs for the input forces and the powers of the three actuators
    corecore