304 research outputs found

    Evidence for early physiotherapy after acute stroke: a scoping review

    Get PDF
    Neuroscience evidence indicates that early rehabilitation can guarantee better outcomes and quicker cortical re-organization after lesion. Although there are some studies related to the acute stroke physiotherapy intervention, it seems that few consider the evidence that link neuroplasticity and neurorehabilitation. Therefore, understanding the current state of the art of physiotherapy intervention is vital to potentialize the intervention so the enhance neuroplastic window is properly explored. To analyze the physiotherapy's intervention on acute stroke patients, so it reveals the underlined evidence for the selection of the approach and if the neurophysiological mechanisms are associated. This scoping review's methodology follows the Joanna Briggs Institue. A main search was conducted across Pubmed, PEdro and Web of science in December 2020, including only studies in Portuguese or English. Studies included focused on the concept of physiotherapy's intervention in a population of adult acute stroke patients, in an acute care context. Were identified 14 categories of interventions in 37 studies. 62% of studies didn't give any justification for the choic of method and the ones who did, weren't focused on neurophysiological knowledge. A wide range of interventions was found in which only 38% showed justifications that were considered insufficient and imprecise

    Active robotic training improves locomotor function in a stroke survivor

    Full text link
    Abstract Background Clinical outcomes after robotic training are often not superior to conventional therapy. One key factor responsible for this is the use of control strategies that provide substantial guidance. This strategy not only leads to a reduction in volitional physical effort, but also interferes with motor relearning. Methods We tested the feasibility of a novel training approach (active robotic training) using a powered gait orthosis (Lokomat) in mitigating post-stroke gait impairments of a 52-year-old male stroke survivor. This gait training paradigm combined patient-cooperative robot-aided walking with a target-tracking task. The training lasted for 4-weeks (12 visits, 3 × per week). The subject’s neuromotor performance and recovery were evaluated using biomechanical, neuromuscular and clinical measures recorded at various time-points (pre-training, post-training, and 6-weeks after training). Results Active robotic training resulted in considerable increase in target-tracking accuracy and reduction in the kinematic variability of ankle trajectory during robot-aided treadmill walking. These improvements also transferred to overground walking as characterized by larger propulsive forces and more symmetric ground reaction forces (GRFs). Training also resulted in improvements in muscle coordination, which resembled patterns observed in healthy controls. These changes were accompanied by a reduction in motor cortical excitability (MCE) of the vastus medialis, medial hamstrings, and gluteus medius muscles during treadmill walking. Importantly, active robotic training resulted in substantial improvements in several standard clinical and functional parameters. These improvements persisted during the follow-up evaluation at 6 weeks. Conclusions The results indicate that active robotic training appears to be a promising way of facilitating gait and physical function in moderately impaired stroke survivors.http://deepblue.lib.umich.edu/bitstream/2027.42/112853/1/12984_2011_Article_375.pd

    Physiological responses and energy cost of walking on the Gait Trainer with and without body weight support in subacute stroke patients

    Get PDF
    BACKGROUND: Robotic-assisted walking after stroke provides intensive task-oriented training. But, despite the growing diffusion of robotic devices little information is available about cardiorespiratory and metabolic responses during electromechanically-assisted repetitive walking exercise. Aim of the study was to determine whether use of an end-effector gait training (GT) machine with body weight support (BWS) would affect physiological responses and energy cost of walking (ECW) in subacute post-stroke hemiplegic patients. METHODS: Participants: six patients (patient group: PG) with hemiplegia due to stroke (age: 66 ± 15y; time since stroke: 8 ± 3 weeks; four men) and 6 healthy subjects as control group (CG: age, 76 ± 7y; six men). Interventions: overground walking test (OWT) and GT-assisted walking with 0%, 30% and 50% BWS (GT-BWS0%, 30% and 50%). Main Outcome Measures: heart rate (HR), pulmonary ventilation, oxygen consumption, respiratory exchange ratio (RER) and ECW. RESULTS: Intervention conditions significantly affected parameter values in steady state (HR: p = 0.005, V’E: p = 0.001, V'O(2): p < 0.001) and the interaction condition per group affected ECW (p = 0.002). For PG, the most energy (V’O(2) and ECW) demanding conditions were OWT and GT-BWS0%. On the contrary, for CG the least demanding condition was OWT. On the GT, increasing BWS produced a decrease in energy and cardiac demand in both groups. CONCLUSIONS: In PG, GT-BWS walking resulted in less cardiometabolic demand than overground walking. This suggests that GT-BWS walking training might be safer than overground walking training in subacute stroke patients

    The Effectiveness of Lower-Limb Wearable Technology for Improving Activity and Participation in Adult Stroke Survivors: A Systematic Review

    Get PDF
    Background: With advances in technology, the adoption of wearable devices has become a viable adjunct in poststroke rehabilitation. Regaining ambulation is a top priority for an increasing number of stroke survivors. However, despite an increase in research exploring these devices for lower limb rehabilitation, little is known of the effectiveness. Objective: This review aims to assess the effectiveness of lower limb wearable technology for improving activity and participation in adult stroke survivors. Methods: Randomized controlled trials (RCTs) of lower limb wearable technology for poststroke rehabilitation were included. Primary outcome measures were validated measures of activity and participation as defined by the International Classification of Functioning, Disability and Health. Databases searched were MEDLINE, Web of Science (Core collection), CINAHL, and the Cochrane Library. The Cochrane Risk of Bias Tool was used to assess the methodological quality of the RCTs. Results: In the review, we included 11 RCTs with collectively 550 participants at baseline and 474 participants at final follow-up including control groups and participants post stroke. Participants' stroke type and severity varied. Only one study found significant between-group differences for systems functioning and activity. Across the included RCTs, the lowest number of participants was 12 and the highest was 151 with a mean of 49 participants. The lowest number of participants to drop out of an RCT was zero in two of the studies and 19 in one study. Significant between-group differences were found across three of the 11 included trials. Out of the activity and participation measures alone, P values ranged from P=.87 to P≤.001. Conclusions: This review has highlighted a number of reasons for insignificant findings in this area including low sample sizes, appropriateness of the RCT methodology for complex interventions, a lack of appropriate analysis of outcome data, and participant stroke severity

    Influence of skill and exercise training parameters on locomotor recovery during stroke rehabilitation

    Get PDF
    Purpose of review: Research findings from the fields of motor learning and exercise physiology suggest specific training parameters that can be manipulated during physical rehabilitation profoundly influence skilled task performance. This review details the rationale for some of these training variables and their application in selected intervention studies focused on improving walking function in patients poststroke. Recent findings: Basic and applied studies have shown that the amount, intensity, and variability of specific task practice applied during rehabilitation interventions can affect recovery of walking poststroke. Many studies detailing the effects of conventional, therapist, and mechanically assisted interventions may incorporate some of these training parameters but minimize others, and their relative contributions may influence walking outcomes. Specific patient factors, such as the stroke acuity and degree of impairments, appear to influence the relative contributions of these training variables, and different patient subgroups may benefit from greater emphasis on specific parameters. Summary: The present findings suggest these training parameters should be considered when evaluating or implementing physical interventions directed toward improving locomotor function poststroke. More work is needed to understand their optimal combinations to maximize walking outcomes in patients with different levels of impairment poststroke
    • …
    corecore