86 research outputs found

    An automated optimization pipeline for clinical-grade computer-assisted planning of high tibial osteotomies under consideration of weight-bearing

    Full text link
    3D preoperative planning for high tibial osteotomies (HTO) has increasingly replaced 2D planning but is complex, time-consuming and therefore expensive. Several interdependent clinical objectives and constraints have to be considered, which often requires multiple rounds of revisions between surgeons and biomedical engineers. We therefore developed an automated preoperative planning pipeline, which takes imaging data as an input to generate a ready-to-use, patient-specific planning solution. Deep-learning based segmentation and landmark localization was used to enable the fully automated 3D lower limb deformity assessment. A 2D-3D registration algorithm allowed the transformation of the 3D bone models into the weight-bearing state. Finally, an optimization framework was implemented to generate ready-to use preoperative plannings in a fully automated fashion, using a genetic algorithm to solve the multi-objective optimization (MOO) problem based on several clinical requirements and constraints. The entire pipeline was evaluated on a large clinical dataset of 53 patient cases who previously underwent a medial opening-wedge HTO. The pipeline was used to automatically generate preoperative solutions for these patients. Five experts blindly compared the automatically generated solutions to the previously generated manual plannings. The overall mean rating for the algorithm-generated solutions was better than for the manual solutions. In 90% of all comparisons, they were considered to be equally good or better than the manual solution. The combined use of deep learning approaches, registration methods and MOO can reliably produce ready-to-use preoperative solutions that significantly reduce human workload and related health costs

    RAFS: A computer-assisted robotic system for minimally invasive joint fracture surgery, based on pre- and intra-operative imaging

    Get PDF
    The integration of minimally invasive robotic assistance and image-guidance can have positive impact on joint fracture surgery, providing a better clinical outcome with respect to the current open procedure. In this paper, a new design of the RAFS surgical system is presented. The redesign of the robotic system and its integration with a novel 3D navigation system through a new clinical workflow, overcomes the drawbacks of the earlier prototype. This makes the RAFS surgical system more suitable to clinical scenarios in the operating theatre. System accuracy and effectiveness are successfully demonstrated through laboratory trials and preliminary cadaveric trials. The experimental results demonstrate that the system allows the surgeon to reduce a 2-fragment distal femur fracture in a cadaveric specimen, with a reduction accuracy of up to 0.85 mm and 2.2°. Preliminary cadaveric trials also provided a positive and favorable outcome pointing to the usability and safety of the RAFS system in the operating theatre, potentially enhancing the capacity of joint fracture surgeries

    Personalized Hip and Knee Joint Replacement

    Get PDF
    This open access book describes and illustrates the surgical techniques, implants, and technologies used for the purpose of personalized implantation of hip and knee components. This new and flourishing treatment philosophy offers important benefits over conventional systematic techniques, including component positioning appropriate to individual anatomy, improved surgical reproducibility and prosthetic performance, and a reduction in complications. The techniques described in the book aim to reproduce patients’ native anatomy and physiological joint laxity, thereby improving the prosthetic hip/knee kinematics and functional outcomes in the quest of the forgotten joint. They include kinematically aligned total knee/total hip arthroplasty, partial knee replacement, and hip resurfacing. The relevance of available and emerging technological tools for these personalized approaches is also explained, with coverage of, for example, robotics, computer-assisted surgery, and augmented reality. Contributions from surgeons who are considered world leaders in diverse fields of this novel surgical philosophy make this open access book will invaluable to a wide readership, from trainees at all levels to consultants practicing lower limb surger

    Moderne Deformitätenchirurgie

    Get PDF

    Moderne Deformitätenchirurgie

    Get PDF

    The Effect of Robotic Technology on Perioperative Outcomes in Total Knee Arthroplasty

    Get PDF
    Introduction Robotic technology has recently regained momentum in total knee arthroplasty (TKA) but the effects of this technology on accuracy of implant positioning, intraoperative soft tissue injury and postoperative functional rehabilitation remain unknown. The objectives of this research thesis were to compare a comprehensive range of radiological objectives and perioperative outcomes in conventional jig-based TKA versus robotic-arm assisted TKA, and use optical motion capture technology to quantify the effects of anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) resection on knee biomechanics. Methods A series of prospective cohort studies were undertaken in patients with established knee osteoarthritis undergoing primary conventional jig-based TKA versus robotic-arm assisted TKA. Predefined radiological and perioperative study outcomes were recorded by independent observers. Optical motion capture technology during robotic TKA was used to quantify the effects of ACL and PCL resection on knee biomechanics. Results Robotic-arm assisted TKA was associated with improved accuracy of implant positioning, reduced periarticular soft tissue injury, decreased bone trauma, improved postoperative functional rehabilitation, and reduced early systemic inflammatory response compared to conventional jig-based TKA. The Macroscopic Soft Tissue Injury (MASTI) classification system was developed and validated for grading intraoperative periarticular soft tissue injury and bone trauma during TKA. ACL resection created flexion-extension mismatch by increasing the extension gap more than the flexion gap, whilst PCL resection increased the flexion gap proportionally more than the extension gap and created mediolateral laxity in knee flexion but not in extension. Conclusion Robotic-arm assisted TKA was associated with increased accuracy of implant positioning, reduced iatrogenic soft tissue injury, and improved functional rehabilitation compared to conventional jig-based TKA. ACL and PCL resections created unique changes in knee biomechanics that affected flexion-extension gaps and mediolateral soft tissue tension during TKA. On the basis of this thesis, further clinical trials have been established to determine the long-term clinical significance of these findings

    Alignment in total knee arthroplasty : analysis of surgical accuracy

    Get PDF

    Shear-promoted drug encapsulation into red blood cells: a CFD model and μ-PIV analysis

    Get PDF
    The present work focuses on the main parameters that influence shear-promoted encapsulation of drugs into erythrocytes. A CFD model was built to investigate the fluid dynamics of a suspension of particles flowing in a commercial micro channel. Micro Particle Image Velocimetry (μ-PIV) allowed to take into account for the real properties of the red blood cell (RBC), thus having a deeper understanding of the process. Coupling these results with an analytical diffusion model, suitable working conditions were defined for different values of haematocrit

    A Novel Free Form Femoral Cutting Guide

    Get PDF
    Knee arthoplasty is a common procedure that requires the removal of damaged bone and cartilage from the distal femur so that a reconstructive implant may be installed. Traditionally, a five planar resection has been accomplished with a universal cutting box and navigated with either metal jigs or optically tracked computer navigation systems. Free form, or curved, resections have been made possible with surgical robots which control the resection pathway and serve as the navigation system. The free form femoral cutting guide serves as a non powered framework to guide a standard surgical drill along an anatomically defined pathway, resulting in the removal of distal femoral cartilage. It is fixed via attachment to a bone mounted base component, which is positioned with a patient specific jig. To operate, the surgeon slides the surgical drill along a pair of interlocked tracks. One track controls motion in the anteroposterior (AP) direction and one track controls motion in the mediolateral (ML) direction. Combining both motions results in the removal of cartilage from the area of the distal femur for unilateral or total knee arthoplasty
    corecore