3,944 research outputs found

    Learning task-oriented dexterous grasping from human knowledge

    Get PDF
    Industrial automation requires robot dexterity to automate many processes such as product assembling, packaging, and material handling. The existing robotic systems lack the capability to determining proper grasp strategies in the context of object affordances and task designations. In this paper, a framework of task-oriented dexterous grasping is proposed to learn grasp knowledge from human experience and to deploy the grasp strategies while adapting to grasp context. Grasp topology is defined and grasp strategies are learned from an established dataset for task-oriented dexterous manipulation. To adapt to various grasp context, a reinforcement-learning based grasping policy was implement to deploy different task-oriented strategies. The performances of the system was evaluated in a simulated grasping environment by using an AR10 anthropomorphic hand installed in a Sawyer robotic arm. The proposed framework achieved a hit rate of 100% for grasp strategies and an overall top-3 match rate of 95.6%. The success rate of grasping was 85.6% during 2700 grasping experiments for manipulation tasks given in natural-language instructions

    The KIT swiss knife gripper for disassembly tasks: a multi-functional gripper for bimanual manipulation with a single arm

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This work presents the concept of a robotic gripper designed for the disassembly of electromechanical devices that comprises several innovative ideas. Novel concepts include the ability to interchange built-in tools without the need to grasp them, the ability to reposition grasped objects in-hand, the capability of performing classic dual arm manipulation within the gripper and the utilization of classic industrial robotic arms kinematics within a robotic gripper. We analyze state of the art grippers and robotic hands designed for dexterous in-hand manipulation and extract common characteristics and weak points. The presented concept is obtained from the task requirements for disassembly of electromechanical devices and it is then evaluated for general purpose grasping, in-hand manipulation and operations with tools. We further present the CAD design for a first prototype.Peer ReviewedPostprint (author's final draft

    Analysis and Observations from the First Amazon Picking Challenge

    Full text link
    This paper presents a overview of the inaugural Amazon Picking Challenge along with a summary of a survey conducted among the 26 participating teams. The challenge goal was to design an autonomous robot to pick items from a warehouse shelf. This task is currently performed by human workers, and there is hope that robots can someday help increase efficiency and throughput while lowering cost. We report on a 28-question survey posed to the teams to learn about each team's background, mechanism design, perception apparatus, planning and control approach. We identify trends in this data, correlate it with each team's success in the competition, and discuss observations and lessons learned based on survey results and the authors' personal experiences during the challenge
    • 

    corecore