1,529 research outputs found

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugÀnglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    TZC: Efficient Inter-Process Communication for Robotics Middleware with Partial Serialization

    Full text link
    Inter-process communication (IPC) is one of the core functions of modern robotics middleware. We propose an efficient IPC technique called TZC (Towards Zero-Copy). As a core component of TZC, we design a novel algorithm called partial serialization. Our formulation can generate messages that can be divided into two parts. During message transmission, one part is transmitted through a socket and the other part uses shared memory. The part within shared memory is never copied or serialized during its lifetime. We have integrated TZC with ROS and ROS2 and find that TZC can be easily combined with current open-source platforms. By using TZC, the overhead of IPC remains constant when the message size grows. In particular, when the message size is 4MB (less than the size of a full HD image), TZC can reduce the overhead of ROS IPC from tens of milliseconds to hundreds of microseconds and can reduce the overhead of ROS2 IPC from hundreds of milliseconds to less than 1 millisecond. We also demonstrate the benefits of TZC by integrating with TurtleBot2 that are used in autonomous driving scenarios. We show that by using TZC, the braking distance can be shortened by 16% than ROS

    Robotics software frameworks for multi-agent robotic systems development

    Get PDF
    Robotics is an area of research in which the paradigm of Multi-Agent Systems (MAS) can prove to be highly useful. Multi-Agent Systems come in the form of cooperative robots in a team, sensor networks based on mobile robots, and robots in Intelligent Environments, to name but a few. However, the development of Multi-Agent Robotic Systems (MARS) still presents major challenges. Over the past decade, a high number of Robotics Software Frameworks (RSFs) have appeared which propose some solutions to the most recurrent problems in robotics. Some of these frameworks, such as ROS, YARP, OROCOS, ORCA, Open-RTM, and Open-RDK, possess certain characteristics and provide the basic infrastructure necessary for the development of MARS. The contribution of this work is the identification of such characteristics as well as the analysis of these frameworks in comparison with the general-purpose Multi-Agent System Frameworks (MASFs), such as JADE and Mobile-C.Ministerio de Ciencia e InnovaciĂłn TEC2009-10639-C04-02Junta de AndalucĂ­a P06-TIC-2298Junta de AndalucĂ­a P08-TIC-0386

    A Multi-Vehicle Cooperative Localization Approach for an Autonomy Framework

    Get PDF
    Offensive techniques produced by technological advancement present opportunities for adversaries to threaten the operational advantages of our joint and allied forces. Combating these new methodologies requires continuous and rapid development towards our own set of \game-changing technologies. Through focused development of unmanned systems and autonomy, the Air Force can strive to maintain its technological superiority. Furthermore, creating a robust framework capable of testing and evaluating the principles that define autonomy allows for the exploration of future capabilities. This research presents development towards a hybrid reactive/deliberative architecture that will allow for the testing of the principles of task, cognitive, and peer flexibility. Specifically, this work explores peer flexibility in multi-robot systems to solve a localization problem using the Hybrid Architecture for Multiple Robots (HAMR) as a basis for the framework. To achieve this task a combination of vehicle perception and navigation tools formulate inferences on an operating environment. These inferences are then used for the construction of Factor Graphs upon which the core algorithm for localization implements iSAM2, a high performing incremental matrix factorization method. A key component for individual vehicle control within the framework is the Unified Behavior Framework (UBF), a behavior-based control architecture which uses modular arbitration techniques to generate actions that enable actuator control. Additionally, compartmentalization of a World Model is explored through the use of containers to minimize communication overhead and streamline state information. The design for this platform takes on a polymorphic approach for modularity and robustness enabling future development

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Distributed Robotic Systems in the Edge-Cloud Continuum with ROS 2: a Review on Novel Architectures and Technology Readiness

    Full text link
    Robotic systems are more connected, networked, and distributed than ever. New architectures that comply with the \textit{de facto} robotics middleware standard, ROS\,2, have recently emerged to fill the gap in terms of hybrid systems deployed from edge to cloud. This paper reviews new architectures and technologies that enable containerized robotic applications to seamlessly run at the edge or in the cloud. We also overview systems that include solutions from extension to ROS\,2 tooling to the integration of Kubernetes and ROS\,2. Another important trend is robot learning, and how new simulators and cloud simulations are enabling, e.g., large-scale reinforcement learning or distributed federated learning solutions. This has also enabled deeper integration of continuous interaction and continuous deployment (CI/CD) pipelines for robotic systems development, going beyond standard software unit tests with simulated tests to build and validate code automatically. We discuss the current technology readiness and list the potential new application scenarios that are becoming available. Finally, we discuss the current challenges in distributed robotic systems and list open research questions in the field

    AGNI: an API for the control of automomous service robots

    Get PDF
    With the continuum growth of Internet connected devices, the scalability of the protocols used for communication between them is facing a new set of challenges. In robotics these communications protocols are an essential element, and must be able to accomplish with the desired communication. In a context of a multi-­‐‑agent platform, the main types of Internet communication protocols used in robotics, mission planning and task allocation problems will be revised. It will be defined how to represent a message and how to cope with their transport between devices in a distributed environment, reviewing all the layers of the messaging process. A review of the ROS platform is also presented with the intent of integrating the already existing communication protocols with the ServRobot, a mobile autonomous robot, and the DVA, a distributed autonomous surveillance system. This is done with the objective of assigning missions to ServRobot in a security context

    Behavior Flexibility for Autonomous Unmanned Aerial Systems

    Get PDF
    Autonomous unmanned aerial systems (UAS) could supplement and eventually subsume a substantial portion of the mission set currently executed by remote pilots, making UAS more robust, responsive, and numerous than permitted by teleoperation alone. Unfortunately, the development of robust autonomous systems is difficult, costly, and time-consuming. Furthermore, the resulting systems often make little reuse of proven software components and offer limited adaptability for new tasks. This work presents a development platform for UAS which promotes behavioral flexibility. The platform incorporates the Unified Behavior Framework (a modular, extensible autonomy framework), the Robotic Operating System (a RSF), and PX4 (an open- source flight controller). Simulation of UBF agents identify a combination of reactive robotic control strategies effective for small-scale navigation tasks by a UAS in the presence of obstacles. Finally, flight tests provide a partial validation of the simulated results. The development platform presented in this work offers robust and responsive behavioral flexibility for UAS agents in simulation and reality. This work lays the foundation for further development of a unified autonomous UAS platform supporting advanced planning algorithms and inter-agent communication by providing a behavior-flexible framework in which to implement, execute, extend, and reuse behaviors
    • 

    corecore