8 research outputs found

    Aerial collective systems

    Get PDF
    Deployment of multiple flying robots has attracted the interest of several research groups in the recent times both because such a feat represents many interesting scientific challenges and because aerial collective systems have a huge potential in terms of applications. By working together, multiple robots can perform a given task quicker or more efficiently than a single system. Furthermore, multiple robots can share computing, sensing and communication payloads thus leading to lighter robots that could be safer than a larger system, easier to transport and even disposable in some cases. Deploying a fleet of unmanned aerial vehicles instead of a single aircraft allows rapid coverage of a relatively larger area or volume. Collaborating airborne agents can help each other by relaying communication or by providing navigation means to their neighbours. Flying in formation provides an effective way of decongesting the airspace. Aerial swarms also have an enormous artistic potential because they allow creating physical 3D structures that can dynamically change their shape over time. However, the challenges to actually build and control aerial swarms are numerous. First of all, a flying platform is often more complicated to engineer than a terrestrial robot because of the inherent weight constraints and the absence of mechanical link with any inertial frame that could provide mechanical stability and state reference. In the first section of this chapter, we therefore review this challenges and provide pointers to state-of-the-art methods to solve them. Then as soon as flying robots need to interact with each other, all sorts of problems arise such as wireless communication from and to rapidly moving objects and relative positioning. The aim of section 3 is therefore to review possible approaches to technically enable coordination among flying systems. Finally, section 4 tackles the challenge of designing individual controllers that enable a coherent behavior at the level of the swarm. This challenge is made even more difficult with flying robots because of their 3D nature and their motion constraints that are often related to the specific architectures of the underlying physical platforms. In this third section is complementary to the rest of this book as it focusses only on methods that have been designed for aerial collective systems

    NASA Technology Plan 1998

    Get PDF
    This NASA Strategic Plan describes an ambitious, exciting vision for the Agency across all its Strategic Enterprises that addresses a series of fundamental questions of science and research. This vision is so challenging that it literally depends on the success of an aggressive, cutting-edge advanced technology development program. The objective of this plan is to describe the NASA-wide technology program in a manner that provides not only the content of ongoing and planned activities, but also the rationale and justification for these activities in the context of NASA's future needs. The scope of this plan is Agencywide, and it includes technology investments to support all major space and aeronautics program areas, but particular emphasis is placed on longer term strategic technology efforts that will have broad impact across the spectrum of NASA activities and perhaps beyond. Our goal is to broaden the understanding of NASA technology programs and to encourage greater participation from outside the Agency. By relating technology goals to anticipated mission needs, we hope to stimulate additional innovative approaches to technology challenges and promote more cooperative programs with partners outside NASA who share common goals. We also believe that this will increase the transfer of NASA-sponsored technology into nonaerospace applications, resulting in an even greater return on the investment in NASA

    Planetary Science Vision 2050 Workshop : February 27–28 and March 1, 2017, Washington, DC

    Get PDF
    This workshop is meant to provide NASA’s Planetary Science Division with a very long-range vision of what planetary science may look like in the future.Organizer, Lunar and Planetary Institute ; Conveners, James Green, NASA Planetary Science Division, Doris Daou, NASA Planetary Science Division ; Science Organizing Committee, Stephen Mackwell, Universities Space Research Association [and 14 others]PARTIAL CONTENTS: Exploration Missions to the Kuiper Belt and Oort Cloud--Future Mercury Exploration: Unique Science Opportunities from Our Solar System’s Innermost Planet--A Vision for Ice Giant Exploration--BAOBAB (Big and Outrageously Bold Asteroid Belt) Project--Asteroid Studies: A 35-Year Forecast--Sampling the Solar System: The Next Level of Understanding--A Ground Truth-Based Approach to Future Solar System Origins Research--Isotope Geochemistry for Comparative Planetology of Exoplanets--The Moon as a Laboratory for Biological Contamination Research--“Be Careful What You Wish For:” The Scientific, Practical, and Cultural Implications of Discovering Life in Our Solar System--The Importance of Particle Induced X-Ray Emission (PIXE) Analysis and Imaging to the Search for Life on the Ocean Worlds--Follow the (Outer Solar System) Water: Program Options to Explore Ocean Worlds--Analogies Among Current and Future Life Detection Missions and the Pharmaceutical/ Biomedical Industries--On Neuromorphic Architectures for Efficient, Robust, and Adaptable Autonomy in Life Detection and Other Deep Space Missions
    corecore