575 research outputs found

    Human-centred design methods : developing scenarios for robot assisted play informed by user panels and field trials

    Get PDF
    Original article can be found at: http://www.sciencedirect.com/ Copyright ElsevierThis article describes the user-centred development of play scenarios for robot assisted play, as part of the multidisciplinary IROMEC1 project that develops a novel robotic toy for children with special needs. The project investigates how robotic toys can become social mediators, encouraging children with special needs to discover a range of play styles, from solitary to collaborative play (with peers, carers/teachers, parents, etc.). This article explains the developmental process of constructing relevant play scenarios for children with different special needs. Results are presented from consultation with panel of experts (therapists, teachers, parents) who advised on the play needs for the various target user groups and who helped investigate how robotic toys could be used as a play tool to assist in the children’s development. Examples from experimental investigations are provided which have informed the development of scenarios throughout the design process. We conclude by pointing out the potential benefit of this work to a variety of research projects and applications involving human–robot interactions.Peer reviewe

    Applications of Robotics for Autism Spectrum Disorder: a Scoping Review

    Get PDF
    Robotic therapies are receiving growing interest in the autism field, especially for the improvement of social skills of children, enhancing traditional human interventions. In this work, we conduct a scoping review of the literature in robotics for autism, providing the largest review on this field from the last five years. Our work underlines the need to better characterize participants and to increase the sample size. It is also important to develop homogeneous training protocols to analyse and compare the results. Nevertheless, 7 out of the 10 Randomized control trials reported a significant impact of robotic therapy. Overall, robot autonomy, adaptability and personalization as well as more standardized outcome measures were pointed as the most critical issues to address in future research

    Tecnologia assistiva para crianças com transtorno do espectro autista que vivenciam estresse e ansiedade

    Get PDF
    With the development of current technology and influences that have been made by the Industry 4.0 utilizing ICTs, IoT, smart systems and products and many others, Assistive Technology (AT) is an important and integral part of the daily life of many people who experience disabilities. Autism Spectrum Disorder (ASD) is a special category of disorder that can greatly benefit from its use. The purpose of this research is to collect data of Assistive Technology aimed at the detection, prevention and improvement of anxiety and stress (a characteristic of which has been proven to exist and is expressed in various ways in people with ASD). In the introduction, basic definitions regarding the neurobiology of stress and ASD are analyzed. In the main part AT, stress and anxiety correlations are made with ASD and AT devices are described and documented regarding their use for anxiety and stress in children and adolescents with ASD. The Assistive equipment and devices are divided into 2 main categories, 1) Low-tech and 2) Mid-High tech. The results of the research reveal a significant research gap in the use of AT to combat stress and anxiety and the difficulty of many promising options (especially in the domain of Mid-High tech) to be an easy and economical solution in integrating them into the daily life of people with ASD.Con el desarrollo de la tecnología actual y las influencias que ha tenido la Industria 4.0 utilizando TIC, IoT, sistemas y productos inteligentes y muchos otros, la Tecnología de asistencia (TA) es una parte importante e integral de la vida diaria de muchas personas que sufren de discapacidad. . . El trastorno del espectro autista (TEA) es una categoría especial de trastorno que puede beneficiarse enormemente de su uso. El objetivo de esta investigación es recopilar datos de Tecnología Asistiva dirigidos a detectar, prevenir y mejorar la ansiedad y el estrés (una característica que está comprobada y se expresa de diferentes formas en las personas con TEA). En la introducción se analizan definiciones básicas sobre la neurobiología del estrés y el TEA. En su mayor parte se realizan correlaciones de TA, estrés y ansiedad con los TEA y se describen y documentan los dispositivos de TA en relación a su uso para la ansiedad y el estrés en niños y adolescentes con TEA. Los equipos y dispositivos de asistencia se dividen en 2 categorías principales, 1) Tecnología baja y 2) Tecnología media-alta. Los resultados de la encuesta revelan una importante brecha de investigación en el uso de TA para combatir el estrés y la ansiedad y la dificultad de que muchas opciones prometedoras (especialmente en el dominio tecnológico medio-alto) sean una solución fácil y rentable para integrarlas en la vida cotidiana. de personas con TEA.Com o desenvolvimento da tecnologia atual e as influências que foram feitas pela Indústria 4.0 utilizando TICs, IoT, sistemas e produtos inteligentes e muitos outros, a Tecnologia Assistiva (TA) é uma parte importante e integrante da vida diária de muitas pessoas que sofrem de deficiência. O Transtorno do Espectro do Autismo (TEA) é uma categoria especial de transtorno que pode se beneficiar muito com seu uso. O objetivo desta pesquisa é coletar dados de Tecnologia Assistiva voltados para a detecção, prevenção e melhora da ansiedade e do estresse (característica que comprovadamente existe e se expressa de diversas formas em pessoas com TEA). Na introdução, são analisadas definições básicas sobre a neurobiologia do estresse e do TEA. Na parte principal, são feitas correlações de TA, estresse e ansiedade com ASD e dispositivos de TA são descritos e documentados em relação ao seu uso para ansiedade e estresse em crianças e adolescentes com TEA. Os equipamentos e dispositivos assistivos são divididos em 2 categorias principais, 1) Low-tech e 2) Mid-High tech. Os resultados da pesquisa revelam uma lacuna significativa de pesquisa no uso de TA para combater o estresse e a ansiedade e a dificuldade de muitas opções promissoras (especialmente no domínio da tecnologia média-alta) serem uma solução fácil e econômica em integrá-las ao cotidiano de pessoas com TEA

    Head Impact Severity Measures for Small Social Robots Thrown During Meltdown in Autism

    Get PDF
    Social robots have gained a lot of attention recently as they have been reported to be effective in supporting therapeutic services for children with autism. However, children with autism may exhibit a multitude of challenging behaviors that could be harmful to themselves and to others around them. Furthermore, social robots are meant to be companions and to elicit certain social behaviors. Hence, the presence of a social robot during the occurrence of challenging behaviors might increase any potential harm. In this paper, we identified harmful scenarios that might emanate between a child and a social robot due to the manifestation of challenging behaviors. We then quantified the harm levels based on severity indices for one of the challenging behaviors (i.e. throwing of objects). Our results showed that the overall harm levels based on the selected severity indices are relatively low compared to their respective thresholds. However, our investigation of harm due to throwing of a small social robot to the head revealed that it could potentially cause tissue injuries, subconcussive or even concussive events in extreme cases. The existence of such behaviors must be accounted for and considered when developing interactive social robots to be deployed for children with autism.The work is supported by a research grant from Qatar University under the grant No. QUST-1-CENG-2018-7Scopu

    Influence of the shape and mass of a small robot when thrown to a dummy human head

    Get PDF
    Social robots have shown some efficacy in assisting children with autism and are now being considered as assistive tools for therapy. The physical proximity of a small companion social robot could become a source of harm to children with autism during aggressive physical interactions. A child exhibiting challenging behaviors could throw a small robot that could harm another child 0 s head upon impact. In this paper, we investigate the effects of the mass and the shape of objects thrown on impact at different impact velocities on the linear acceleration of a developed dummy head. This dummy head could be the head of another child or a caregiver in the room. A total of 27 main experiments were conducted based on Taguchi’s orthogonal array design. The data were then analyzed using ANOVA and signal-to-noise (S/N). Our results revealed that the two design factors considered (i.e. mass and shape) and the noise factor (i.e. impact velocities) affected the resultant response. Finally, confirmation runs at the optimal identified shape and mass (i.e. mass of 0.3 kg and shape of either cube or wedge) showed an overall reduction in the resultant peak linear acceleration of the dummy head as compared to the other conditions. These results have implications on the design and manufacturing of small social robots whereby minimizing the mass of the robots can aid in mitigating harm to the head due to impact

    Assistive Technology to Improve Collaboration in Children with ASD: State-of-the-Art and Future Challenges in the Smart Products Sector

    Get PDF
    Within the field of products for autism spectrum disorder, one of the main research areas is focused on the development of assistive technology. Mid and high-tech products integrate interactive and smart functions with multisensory reinforcements, making the user experience more intuitive, adaptable, and dynamic. These products have a very significant impact on improving the skills of children with autism, including collaboration and social skills, which are essential for the integration of these children into society and, therefore, their well-being. This work carried out an exhaustive analysis of the scientific literature, as well as market research and trends, and patent analysis to explore the state-of-the-art of assistive technology and smart products for children with ASD, specifically those aimed at improving social and communication skills. The results show a reduced availability of products that act as facilitators of the special needs of children with ASD, which is even more evident for products aimed at improving collaboration skills. Products that allow the participation of several users simultaneously through multi-user interfaces are required. On top of this, the trend toward virtual environments is leading to a loss of material aspects in the design that are essential for the development of these children

    Safety experiments for small robots investigating the potential of soft materials in mitigating the harm to the head due to impacts

    Get PDF
    There is a growing interest in social robots to be considered in the therapy of children with autism due to their effectiveness in improving the outcomes. However, children on the spectrum exhibit challenging behaviors that need to be considered when designing robots for them. A child could involuntarily throw a small social robot during meltdown and that could hit another person's head and cause harm (e.g. concussion). In this paper, the application of soft materials is investigated for its potential in attenuating head's linear acceleration upon impact. The thickness and storage modulus of three different soft materials were considered as the control factors while the noise factor was the impact velocity. The design of experiments was based on Taguchi method. A total of 27 experiments were conducted on a developed dummy head setup that reports the linear acceleration of the head. ANOVA tests were performed to analyze the data. The findings showed that the control factors are not statistically significant in attenuating the response. The optimal values of the control factors were identified using the signal-to-noise (S/N) ratio optimization technique. Confirmation runs at the optimal parameters (i.e. thickness of 3 mm and 5 mm) showed a better response as compared to other conditions. Designers of social robots should consider the application of soft materials to their designs as it help in reducing the potential harm to the head

    Motion-based technology to support motor skills screening in developing children: A scoping review

    Get PDF
    Background. Acquiring motor skills is fundamental for children's development since it is linked to cognitive development. However, access to early detection of motor development delays is limited. Aim. This review explores the use and potential of motion-based technology (MBT) as a complement to support and increase access to motor screening in developing children. Methods. Six databases were searched following the PRISMA guidelines to search, select, and assess relevant works where MBT recognised the execution of children's motor skills. Results. 164 studies were analysed to understand the type of MBT used, the motor skills detected, the purpose of using MBT and the age group targeted. Conclusions. There is a gap in the literature aiming to integrate MBT in motor skills development screening and assessment processes. Depth sensors are the prevailing technology offering the largest detection range for children from age 2. Nonetheless, the motor skills detected by MBT represent about half of the motor skills usually observed to screen and assess motor development. Overall, research in this field is underexplored. The use of multimodal approaches, combining various motion-based sensors, may support professionals in the health domain and increase access to early detection programmes.Funding for open access charge: Universidad de Málaga / CBUA

    Safe and Adaptive Social Robots for Children with Autism

    Get PDF
    Social robots are being considered to be a part of the therapy for children with autism due to the reported efficacy such technology in improving the outcomes. How ever, children diagnosed with autism exhibit challenging behaviors that could cause harm to themselves and to others around them. Throwing, hitting, kicking, and self harming are some examples of the challenging behaviors that were reported to occur among this population. The occurrence of such behaviors during the presence of a social robot could raise some safety concerns. For this reason, this research attempts toidentify the potential for harm due to the diffusion of social robots and investigate means to mitigate them. Considering the advancement in technology and the progress made in many computer science disciplines are making small and adaptable social robots a foreseeable possibility, the studies presented here focus on small robotic form factors.The first study quantities the potential harm to the head due to one of the identi?ed risky scenarios that might occur between a child and a social robot. The results re leaved that the overall harm levels based on the selected severity indices are relatively low compared to their respective thresholds. However, the investigation of harm due to throwing of a small social robot to the head revealed that it could potentially causet issue injuries, sub-concussive or even concussive events in extreme cases. The second two studies are aimed to make small robots safer by optimizing their design. Hence,studies are conducted investigating how robot design can be made safer by investigating different design factors. The study investigated the in?uence of the mass and shape on the linear acceleration of a developed dummy head. The results revealed that the two design factors considered (i.e. mass and shape) affected the resultant response. The second study investigated the in offence three different soft material sonthesa meresponse. The endings showed that the control factors considered are not statistically significant in attenuating the response. Finally, the last two studies attempt to make small robots more adaptable to promote safer interactions. This is carried out by em bedding the recognition of unwanted physical interactions into companion robot with the appropriate timing of responses. The findings of the first study highlight the pos sibility of characterizing children's negative interactions with robotic toys relying on accelerometer sensor. The second study showed that producing a late response to an action (i.e. greater than 1.0 s) could negatively affect the children's comprehension of the intended message. The work presented in this dissertation is multidisciplinary that involves the field of Mechanical Engineering and Information Technology
    corecore