662 research outputs found

    Robotic swarm control from spatio-temporal specifications

    Full text link
    In this paper, we study the problem of controlling a two-dimensional robotic swarm with the purpose of achieving high level and complex spatio-temporal patterns. We use a rich spatio-temporal logic that is capable of describing a wide range of time varying and complex spatial configurations, and develop a method to encode such formal specifications as a set of mixed integer linear constraints, which are incorporated into a mixed integer linear programming problem. We plan trajectories for each individual robot such that the whole swarm satisfies the spatio-temporal requirements, while optimizing total robot movement and/or a metric that shows how strongly the swarm trajectory resembles given spatio-temporal behaviors. An illustrative case study is included.This work was partially supported by the National Science Foundation under grants NRI-1426907 and CMMI-1400167. (NRI-1426907 - National Science Foundation; CMMI-1400167 - National Science Foundation

    Neural Network-based Control for Multi-Agent Systems from Spatio-Temporal Specifications

    Full text link
    We propose a framework for solving control synthesis problems for multi-agent networked systems required to satisfy spatio-temporal specifications. We use Spatio-Temporal Reach and Escape Logic (STREL) as a specification language. For this logic, we define smooth quantitative semantics, which captures the degree of satisfaction of a formula by a multi-agent team. We use the novel quantitative semantics to map control synthesis problems with STREL specifications to optimization problems and propose a combination of heuristic and gradient-based methods to solve such problems. As this method might not meet the requirements of a real-time implementation, we develop a machine learning technique that uses the results of the off-line optimizations to train a neural network that gives the control inputs at current states. We illustrate the effectiveness of the proposed framework by applying it to a model of a robotic team required to satisfy a spatial-temporal specification under communication constraints.Comment: 8 pages. Submitted to the CDC 202

    Spatio-temporal logics for verification and control of networked systems

    Full text link
    Emergent behaviors in networks of locally interacting dynamical systems have been a topic of great interest in recent years. As the complexity of these systems increases, so does the range of emergent properties that they exhibit. Due to recent developments in areas such as synthetic biology and multi-agent robotics, there has been a growing necessity for a formal and automated framework for studying global behaviors in such networks. We propose a formal methods approach for describing, verifying, and synthesizing complex spatial and temporal network properties. Two novel logics are introduced in the first part of this dissertation: Tree Spatial Superposition Logic (TSSL) and Spatial Temporal Logic (SpaTeL). The former is a purely spatial logic capable of formally describing global spatial patterns. The latter is a temporal extension of TSSL and is ideal for expressing how patterns evolve over time. We demonstrate how machine learning techniques can be utilized to learn logical descriptors from labeled and unlabeled system outputs. Moreover, these logics are equipped with quantitative semantics and thus provide a metric for distance to satisfaction for randomly generated system trajectories. We illustrate how this metric is used in a statistical model checking framework for verification of networks of stochastic systems. The parameter synthesis problem is considered in the second part, where the goal is to determine static system parameters that lead to the emergence of desired global behaviors. We use quantitative semantics to formulate optimization procedures with the purpose of tuning system inputs. Particle swarm optimization is employed to efficiently solve these optimization problems, and the efficacy of this framework is demonstrated in two applications: biological cell networks and smart power grids. The focus of the third part is the control synthesis problem, where the objective is to find time-varying control strategies. We propose two approaches to solve this problem: an exact solution based on mixed integer linear programming, and an approximate solution based on gradient descent. These algorithms are not restricted to the logics introduced in this dissertation and can be applied to other existing logics in the literature. Finally, the capabilities of our framework are shown in the context of multi-agent robotics and robotic swarms

    Consensus control for a system of underwater swarm robots

    Full text link
    The control of a swarm of underwater robots requires both a control algorithm and a communication system. Unfortunately, underwater communications is difficult at the best of times and so large time delays and minimal information is a concern. The control system must be able to handle a large number of robots without a master control, i.e., a decentralized control approach. This paper describes Consensus control as a way to decentralize. Consensus control allows each robot to know the final goal and then to decide, based on the position of the other robots, its best move to help achieve the goal
    • …
    corecore