47,788 research outputs found

    Outcomes of a virtual-reality simulator-training programme on basic surgical skills in robot-assisted laparoscopic surgery

    Get PDF
    Background The utility of the virtual-reality robotic simulator in training programmes has not been clearly evaluated. Our aim was to evaluate the impact of a virtual-reality robotic simulator-training programme on basic surgical skills. Methods A simulator-training programme in robotic surgery, using the da Vinci Skills Simulator, was evaluated in a population including junior and seasoned surgeons, and non-physicians. Their performances on robotic dots and suturing-skin pod platforms before and after virtual-simulation training were rated anonymously by surgeons experienced in robotics. Results 39 participants were enrolled: 14 medical students and residents in surgery, 14 seasoned surgeons, 11 non-physicians. Junior and seasoned surgeons’ performances on platforms were not significantly improved after virtual-reality robotic simulation in any of the skill domains, in contrast to non-physicians. Conclusions The benefits of virtual-reality simulator training on several tasks to basic skills in robotic surgery were not obvious among surgeons in our initial and early experience with the simulator

    Software Reuse across Robotic Platforms: Limiting the effects of diversity

    Get PDF
    Robots have diverse capabilities and complex interactions with their environment. Software development for robotic platforms is time consuming due to the complex nature of the tasks to be performed. Such an environment demands sound software engineering practices to produce high quality software. However software engineering in the robotics domain fails to facilitate any significant level of software reuse or portability. This paper identifies the major issues limiting software reuse in the robotics domain. Lack of standardisation, diversity of robotic platforms, and the subtle effects of environmental interaction all contribute to this problem. It is then shown that software components, fuzzy logic, and related techniques can be used together to address this problem. While complete software reuse is not possible, it is demonstrated that significant levels of software reuse can be obtained. Without an acceptable level of reuse or portability, software engineering in the robotics domain will not be able to meet the demands of a rapidly developing field. The work presented in this paper demonstrates a method for supporting software reuse across robotic platforms and hence facilitating improved software engineering practices

    Blockchain Solutions for Multi-Agent Robotic Systems: Related Work and Open Questions

    Full text link
    The possibilities of decentralization and immutability make blockchain probably one of the most breakthrough and promising technological innovations in recent years. This paper presents an overview, analysis, and classification of possible blockchain solutions for practical tasks facing multi-agent robotic systems. The paper discusses blockchain-based applications that demonstrate how distributed ledger can be used to extend the existing number of research platforms and libraries for multi-agent robotic systems.Comment: 5 pages, FRUCT-2019 conference pape

    Robotic Platforms for Assistance to People with Disabilities

    Get PDF
    People with congenital and/or acquired disabilities constitute a great number of dependents today. Robotic platforms to help people with disabilities are being developed with the aim of providing both rehabilitation treatment and assistance to improve their quality of life. A high demand for robotic platforms that provide assistance during rehabilitation is expected because of the health status of the world due to the COVID-19 pandemic. The pandemic has resulted in countries facing major challenges to ensure the health and autonomy of their disabled population. Robotic platforms are necessary to ensure assistance and rehabilitation for disabled people in the current global situation. The capacity of robotic platforms in this area must be continuously improved to benefit the healthcare sector in terms of chronic disease prevention, assistance, and autonomy. For this reason, research about human–robot interaction in these robotic assistance environments must grow and advance because this topic demands sensitive and intelligent robotic platforms that are equipped with complex sensory systems, high handling functionalities, safe control strategies, and intelligent computer vision algorithms. This Special Issue has published eight papers covering recent advances in the field of robotic platforms to assist disabled people in daily or clinical environments. The papers address innovative solutions in this field, including affordable assistive robotics devices, new techniques in computer vision for intelligent and safe human–robot interaction, and advances in mobile manipulators for assistive tasks

    Control of intelligent robots in space

    Get PDF
    In view of space activities like International Space Station, Man-Tended-Free-Flyer (MTFF) and free flying platforms, the development of intelligent robotic systems is gaining increasing importance. The range of applications that have to be performed by robotic systems in space includes e.g., the execution of experiments in space laboratories, the service and maintenance of satellites and flying platforms, the support of automatic production processes or the assembly of large network structures. Some of these tasks will require the development of bi-armed or of multiple robotic systems including functional redundancy. For the development of robotic systems which are able to perform this variety of tasks a hierarchically structured modular concept of automation is required. This concept is characterized by high flexibility as well as by automatic specialization to the particular sequence of tasks that have to be performed. On the other hand it has to be designed such that the human operator can influence or guide the system on different levels of control supervision, and decision. This leads to requirements for the hardware and software concept which permit a range of application of the robotic systems from telemanipulation to autonomous operation. The realization of this goal requires strong efforts in the development of new methods, software and hardware concepts, and the integration into an automation concept

    Learning robotics: a review

    Get PDF
    Purpose of Review: With the growing interest for STEM/STEAM, new robotic platforms are being created with different characteristics, extras and options. There are so many diverse solutions, that it is difficult for a teacher/student to choose the ideal one. This paper intends to provide an analysis to the most common robotic platforms existent on the market. The same is happening regarding robotic events all around the world, with objectives so distinctive, and with complexity from easy to very difficult. This paper also describes some of those events which occur in many countries. Recent Findings: As the literature is showing, there has been a visible effort from schools and educators to teach robotics from very young ages, not only because robotics is the future, but also as a tool to teach STEM/STEAM areas. But as time progresses, the options for the right platforms also evolves making difficult to choose among them. Some authors opt to first choose a robotic platform and carry on from there. Others choose first a development environment and then look for which robots can be programmed from it. Summary: An actual review on learning robotics is here presented, firstly showing some literature background on history and trends of robotic platforms used in education in general, the different development environments for robotics and finishing on competitions and events. A comprehensive characterization list of robotic platforms along with robotic competitions and events is also shown

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications
    • …
    corecore