7,795 research outputs found

    Application of multiobjective genetic programming to the design of robot failure recognition systems

    Get PDF
    We present an evolutionary approach using multiobjective genetic programming (MOGP) to derive optimal feature extraction preprocessing stages for robot failure detection. This data-driven machine learning method is compared both with conventional (nonevolutionary) classifiers and a set of domain-dependent feature extraction methods. We conclude MOGP is an effective and practical design method for failure recognition systems with enhanced recognition accuracy over conventional classifiers, independent of domain knowledge

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    An evolutionary behavioral model for decision making

    Get PDF
    For autonomous agents the problem of deciding what to do next becomes increasingly complex when acting in unpredictable and dynamic environments pursuing multiple and possibly conflicting goals. One of the most relevant behavior-based model that tries to deal with this problem is the one proposed by Maes, the Bbehavior Network model. This model proposes a set of behaviors as purposive perception-action units which are linked in a nonhierarchical network, and whose behavior selection process is orchestrated by spreading activation dynamics. In spite of being an adaptive model (in the sense of self-regulating its own behavior selection process), and despite the fact that several extensions have been proposed in order to improve the original model adaptability, there is not a robust model yet that can self-modify adaptively both the topological structure and the functional purpose\ud of the network as a result of the interaction between the agent and its environment. Thus, this work proffers an innovative hybrid model driven by gene expression programming, which makes two main contributions: (1) given an initial set of meaningless and unconnected units, the evolutionary mechanism is able to build well-defined and robust behavior networks which are adapted and specialized to concrete internal agent's needs and goals; and (2)\ud the same evolutionary mechanism is able to assemble quite\ud complex structures such as deliberative plans (which operate in the long-term) and problem-solving strategies

    A Multi-Objective Optimization Approach for Multi-Head Beam-Type Placement Machines

    Get PDF
    This paper addresses a highly challenging scheduling problem in the field of printed circuit board (PCB) assembly systems using Surface Mounting Devices (SMD). After describing some challenging optimization sub-problems relating to the heads of multi-head surface mounting placement machines, we formulate an integrated multi-objective mathematical model considering of two main sub-problems simultaneously. The proposed model is a mixed integer nonlinear programming one which is very complex to be solved optimally. Therefore, it is first converted into a linearized model and then solved using an efficient multi-objective approach, i.e., the augmented epsilon constraint method. An illustrative example is also provided to show the usefulness and applicability of the proposed model and solution method.PCB assembly. Multi-head beam-type placement machine. Multi-objective mathematical programming. Augmented epsilon-constraint method

    Symbol Emergence in Robotics: A Survey

    Full text link
    Humans can learn the use of language through physical interaction with their environment and semiotic communication with other people. It is very important to obtain a computational understanding of how humans can form a symbol system and obtain semiotic skills through their autonomous mental development. Recently, many studies have been conducted on the construction of robotic systems and machine-learning methods that can learn the use of language through embodied multimodal interaction with their environment and other systems. Understanding human social interactions and developing a robot that can smoothly communicate with human users in the long term, requires an understanding of the dynamics of symbol systems and is crucially important. The embodied cognition and social interaction of participants gradually change a symbol system in a constructive manner. In this paper, we introduce a field of research called symbol emergence in robotics (SER). SER is a constructive approach towards an emergent symbol system. The emergent symbol system is socially self-organized through both semiotic communications and physical interactions with autonomous cognitive developmental agents, i.e., humans and developmental robots. Specifically, we describe some state-of-art research topics concerning SER, e.g., multimodal categorization, word discovery, and a double articulation analysis, that enable a robot to obtain words and their embodied meanings from raw sensory--motor information, including visual information, haptic information, auditory information, and acoustic speech signals, in a totally unsupervised manner. Finally, we suggest future directions of research in SER.Comment: submitted to Advanced Robotic

    Automated robotic liquid handling assembly of modular DNA devices

    Get PDF
    Recent advances in modular DNA assembly techniques have enabled synthetic biologists to test significantly more of the available "design space" represented by "devices" created as combinations of individual genetic components. However, manual assembly of such large numbers of devices is time-intensive, error-prone, and costly. The increasing sophistication and scale of synthetic biology research necessitates an efficient, reproducible way to accommodate large-scale, complex, and high throughput device construction. Here, a DNA assembly protocol using the Type-IIS restriction endonuclease based Modular Cloning (MoClo) technique is automated on two liquid-handling robotic platforms. Automated liquid-handling robots require careful, often times tedious optimization of pipetting parameters for liquids of different viscosities (e.g. enzymes, DNA, water, buffers), as well as explicit programming to ensure correct aspiration and dispensing of DNA parts and reagents. This makes manual script writing for complex assemblies just as problematic as manual DNA assembly, and necessitates a software tool that can automate script generation. To this end, we have developed a web-based software tool, http://mocloassembly.com, for generating combinatorial DNA device libraries from basic DNA parts uploaded as Genbank files. We provide access to the tool, and an export file from our liquid handler software which includes optimized liquid classes, labware parameters, and deck layout. All DNA parts used are available through Addgene, and their digital maps can be accessed via the Boston University BDC ICE Registry. Together, these elements provide a foundation for other organizations to automate modular cloning experiments and similar protocols. The automated DNA assembly workflow presented here enables the repeatable, automated, high-throughput production of DNA devices, and reduces the risk of human error arising from repetitive manual pipetting. Sequencing data show the automated DNA assembly reactions generated from this workflow are ~95% correct and require as little as 4% as much hands-on time, compared to manual reaction preparation
    • …
    corecore