91 research outputs found

    Design and Experimental Evaluation of a Haptic Robot-Assisted System for Femur Fracture Surgery

    Full text link
    In the face of challenges encountered during femur fracture surgery, such as the high rates of malalignment and X-ray exposure to operating personnel, robot-assisted surgery has emerged as an alternative to conventional state-of-the-art surgical methods. This paper introduces the development of Robossis, a haptic system for robot-assisted femur fracture surgery. Robossis comprises a 7-DOF haptic controller and a 6-DOF surgical robot. A unilateral control architecture is developed to address the kinematic mismatch and the motion transfer between the haptic controller and the Robossis surgical robot. A real-time motion control pipeline is designed to address the motion transfer and evaluated through experimental testing. The analysis illustrates that the Robossis surgical robot can adhere to the desired trajectory from the haptic controller with an average translational error of 0.32 mm and a rotational error of 0.07 deg. Additionally, a haptic rendering pipeline is developed to resolve the kinematic mismatch by constraining the haptic controller (user hand) movement within the permissible joint limits of the Robossis surgical robot. Lastly, in a cadaveric lab test, the Robossis system assisted surgeons during a mock femur fracture surgery. The result shows that Robossis can provide an intuitive solution for surgeons to perform femur fracture surgery.Comment: This paper is to be submitted to an IEEE journa

    Vision-based real-time position control of a semi-automated system for robot-assisted joint fracture surgery

    Get PDF
    Purpose: Joint fracture surgery quality can be improved by robotic system with high-accuracy and high-repeatability fracture fragment manipulation. A new real-time vision-based system for fragment manipulation during robot-assisted fracture surgery was developed and tested. Methods: The control strategy was accomplished by merging fast open-loop control with vision-based control. This two-phase process is designed to eliminate the open-loop positioning errors by closing the control loop using visual feedback provided by an optical tracking system. Evaluation of the control system accuracy was performed using robot positioning trials, and fracture reduction accuracy was tested in trials on ex vivo porcine model.Results: The system resulted in high fracture reduction reliability with a reduction accuracy of 0.09mm (translations) and of (Formula presented.) (rotations), maximum observed errors in the order of 0.12mm (translations) and of (Formula presented.) (rotations), and a reduction repeatability of 0.02mm and (Formula presented.). Conclusions: The proposed vision-based system was shown to be effective and suitable for real joint fracture surgical procedures, contributing a potential improvement of their quality

    Vision Based Robotic Navigation: Application to Orthopedic Surgery

    Get PDF

    Image-Guided Surgical Robotic System for Percutaneous Reduction of Joint Fractures

    Get PDF
    Complex joint fractures often require an open surgical procedure, which is associated with extensive soft tissue damages and longer hospitalization and rehabilitation time. Percutaneous techniques can potentially mitigate these risks but their application to joint fractures is limited by the current sub-optimal 2D intra-operative imaging (fluoroscopy) and by the high forces involved in the fragment manipulation (due to the presence of soft tissue, e.g., muscles) which might result in fracture malreduction. Integration of robotic assistance and 3D image guidance can potentially overcome these issues. The authors propose an image-guided surgical robotic system for the percutaneous treatment of knee joint fractures, i.e., the robot-assisted fracture surgery (RAFS) system. It allows simultaneous manipulation of two bone fragments, safer robot-bone fixation system, and a traction performing robotic manipulator. This system has led to a novel clinical workflow and has been tested both in laboratory and in clinically relevant cadaveric trials. The RAFS system was tested on 9 cadaver specimens and was able to reduce 7 out of 9 distal femur fractures (T- and Y-shape 33-C1) with acceptable accuracy (≈1 mm, ≈5°), demonstrating its applicability to fix knee joint fractures. This study paved the way to develop novel technologies for percutaneous treatment of complex fractures including hip, ankle, and shoulder, thus representing a step toward minimally-invasive fracture surgeries

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Augmented Reality and Artificial Intelligence in Image-Guided and Robot-Assisted Interventions

    Get PDF
    In minimally invasive orthopedic procedures, the surgeon places wires, screws, and surgical implants through the muscles and bony structures under image guidance. These interventions require alignment of the pre- and intra-operative patient data, the intra-operative scanner, surgical instruments, and the patient. Suboptimal interaction with patient data and challenges in mastering 3D anatomy based on ill-posed 2D interventional images are essential concerns in image-guided therapies. State of the art approaches often support the surgeon by using external navigation systems or ill-conditioned image-based registration methods that both have certain drawbacks. Augmented reality (AR) has been introduced in the operating rooms in the last decade; however, in image-guided interventions, it has often only been considered as a visualization device improving traditional workflows. Consequently, the technology is gaining minimum maturity that it requires to redefine new procedures, user interfaces, and interactions. This dissertation investigates the applications of AR, artificial intelligence, and robotics in interventional medicine. Our solutions were applied in a broad spectrum of problems for various tasks, namely improving imaging and acquisition, image computing and analytics for registration and image understanding, and enhancing the interventional visualization. The benefits of these approaches were also discovered in robot-assisted interventions. We revealed how exemplary workflows are redefined via AR by taking full advantage of head-mounted displays when entirely co-registered with the imaging systems and the environment at all times. The proposed AR landscape is enabled by co-localizing the users and the imaging devices via the operating room environment and exploiting all involved frustums to move spatial information between different bodies. The system's awareness of the geometric and physical characteristics of X-ray imaging allows the exploration of different human-machine interfaces. We also leveraged the principles governing image formation and combined it with deep learning and RGBD sensing to fuse images and reconstruct interventional data. We hope that our holistic approaches towards improving the interface of surgery and enhancing the usability of interventional imaging, not only augments the surgeon's capabilities but also augments the surgical team's experience in carrying out an effective intervention with reduced complications

    Developments in circular external fixators: a review

    Get PDF
    Circular external fixators (CEFs) are successfully used in orthopedics owing to their highly favorable stiffness characteristics which promote distraction osteogenesis. Although there are different designs of external fixators, how these features produce optimal biomechanics through structural and component designs is not well known. Therefore, the aim of this study was to conduct a review on CEFs following the PRISMA statement. A search for relevant research articles was performed on Scopus and PubMed databases providing the related keywords. Furthermore, a patent search was conducted on the Google Patent database. 126 records were found to be eligible for the review. Different designs of CEFs were summarized and tabulated based on their specific features. A bibliometric analysis was also performed on the eligible research papers. Based on the findings, the developments of CEFs in terms of materials, automation, adjustment methods, component designs, wire-clamping, and performance evaluation have been extensively discussed. The trends of the CEF design and future directions are also discussed in this review. Significant research gaps include a lack of consideration towards ease of assembly, effective wire-clamping methods, and CEFs embedded with online patient-monitoring systems, among others. An apparent lack of research interest from low-middle and low-income countries was also identified

    Flexible robotic device for spinal surgery

    No full text
    Surgical robots have proliferated in recent years, with well-established benefits including: reduced patient trauma, shortened hospitalisation, and improved diagnostic accuracy and therapeutic outcome. Despite these benefits, many challenges in their development remain, including improved instrument control and ergonomics caused by rigid instrumentation and its associated fulcrum effect. Consequently, it is still extremely challenging to utilise such devices in cases that involve complex anatomical pathways such as the spinal column. The focus of this thesis is the development of a flexible robotic surgical cutting device capable of manoeuvring around the spinal column. The target application of the flexible surgical tool is the removal of cancerous tumours surrounding the spinal column, which cannot be excised completely using the straight surgical tools in use today; anterior and posterior sections of the spine must be accessible for complete tissue removal. A parallel robot platform with six degrees of freedom (6 DoFs) has been designed and fabricated to direct a flexible cutting tool to produce the necessary range of movements to reach anterior and posterior sections of the spinal column. A flexible water jet cutting system and a flexible mechanical drill, which may be assembled interchangeably with the flexible probe, have been developed and successfully tested experimentally. A model predicting the depth of cut by the water jet was developed and experimentally validated. A flexion probe that is able to guide the surgical cutting device around the spinal column has been fabricated and tested with human lumber model. Modelling and simulations show the capacity for the flexible surgical system to enable entering the posterior side of the human lumber model and bend around the vertebral body to reach the anterior side of the spinal column. A computer simulation with a full Graphical User Interface (GUI) was created and used to validate the system of inverse kinematic equations for the robot platform. The constraint controller and the inverse kinematics relations are both incorporated into the overall positional control structure of the robot, and have successfully established a haptic feedback controller for the 6 DoFs surgical probe, and effectively tested in vitro on spinal mock surgery. The flexible surgical system approached the surgery from the posterior side of the human lumber model and bend around the vertebral body to reach the anterior side of the spinal column. The flexible surgical robot removed 82% of mock cancerous tissue compared to 16% of tissue removed by the rigid tool.Open Acces

    Surgical Applications of Compliant Mechanisms:A Review

    Get PDF
    Current surgical devices are mostly rigid and are made of stiff materials, even though their predominant use is on soft and wet tissues. With the emergence of compliant mechanisms (CMs), surgical tools can be designed to be flexible and made using soft materials. CMs offer many advantages such as monolithic fabrication, high precision, no wear, no friction, and no need for lubrication. It is therefore beneficial to consolidate the developments in this field and point to challenges ahead. With this objective, in this article, we review the application of CMs to surgical interventions. The scope of the review covers five aspects that are important in the development of surgical devices: (i) conceptual design and synthesis, (ii) analysis, (iii) materials, (iv) maim facturing, and (v) actuation. Furthermore, the surgical applications of CMs are assessed by classification into five major groups, namely, (i) grasping and cutting, (ii) reachability and steerability, (iii) transmission, (iv) sensing, and (v) implants and deployable devices. The scope and prospects of surgical devices using CMs are also discussed

    Development of an in-vitro passive and active motion Simulator for the investigation of wrist function and Kinematics

    Get PDF
    This thesis outlines the design and development of an active motion simulator for the investigation of wrist kinematics in multiple gravity loaded positions. Using optical trackers on the third metacarpal, radius, and ulna, the position of the wrist was monitored in real time without introducing material incompatibilities as present for electromagnetic tracking systems. Performance of the system was performed using a series of five cadaver upper limbs that compared the ability to produce repeatable trials using unrestrained active motion techniques over passive manipulation methods. Comparisons to achieve static positions as well as motion trials in flexion-extension and radial-ulnar deviation planes proved the superior performance of computer controlled motion over that of passive manipulation. Investigation into the application of tendon portioning to model in-vivo conditions more accurately suggest that they may improve overall quality of motion
    corecore