7,868 research outputs found

    Training modalities in robot-mediated upper limb rehabilitation in stroke : A framework for classification based on a systematic review

    Get PDF
    © 2014 Basteris et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The work described in this manuscript was partially funded by the European project ‘SCRIPT’ Grant agreement no: 288698 (http://scriptproject.eu). SN has been hosted at University of Hertfordshire in a short-term scientific mission funded by the COST Action TD1006 European Network on Robotics for NeuroRehabilitationRobot-mediated post-stroke therapy for the upper-extremity dates back to the 1990s. Since then, a number of robotic devices have become commercially available. There is clear evidence that robotic interventions improve upper limb motor scores and strength, but these improvements are often not transferred to performance of activities of daily living. We wish to better understand why. Our systematic review of 74 papers focuses on the targeted stage of recovery, the part of the limb trained, the different modalities used, and the effectiveness of each. The review shows that most of the studies so far focus on training of the proximal arm for chronic stroke patients. About the training modalities, studies typically refer to active, active-assisted and passive interaction. Robot-therapy in active assisted mode was associated with consistent improvements in arm function. More specifically, the use of HRI features stressing active contribution by the patient, such as EMG-modulated forces or a pushing force in combination with spring-damper guidance, may be beneficial.Our work also highlights that current literature frequently lacks information regarding the mechanism about the physical human-robot interaction (HRI). It is often unclear how the different modalities are implemented by different research groups (using different robots and platforms). In order to have a better and more reliable evidence of usefulness for these technologies, it is recommended that the HRI is better described and documented so that work of various teams can be considered in the same group and categories, allowing to infer for more suitable approaches. We propose a framework for categorisation of HRI modalities and features that will allow comparing their therapeutic benefits.Peer reviewedFinal Published versio

    Design and Development of an Affordable Haptic Robot with Force-Feedback and Compliant Actuation to Improve Therapy for Patients with Severe Hemiparesis

    Get PDF
    The study describes the design and development of a single degree-of-freedom haptic robot, Haptic Theradrive, for post-stroke arm rehabilitation for in-home and clinical use. The robot overcomes many of the weaknesses of its predecessor, the TheraDrive system, that used a Logitech steering wheel as the haptic interface for rehabilitation. Although the original TheraDrive system showed success in a pilot study, its wheel was not able to withstand the rigors of use. A new haptic robot was developed that functions as a drop-in replacement for the Logitech wheel. The new robot can apply larger forces in interacting with the patient, thereby extending the functionality of the system to accommodate low-functioning patients. A new software suite offers appreciably more options for tailored and tuned rehabilitation therapies. In addition to describing the design of the hardware and software, the paper presents the results of simulation and experimental case studies examining the system\u27s performance and usability

    Effects of Impedance Reduction of a Robot for Wrist Rehabilitation on Human Motor Strategies in Healthy Subjects during Pointing Tasks

    Get PDF
    Studies on human motor control demonstrated the existence of simplifying strategies (namely `Donders' law') adopted to deal with kinematically redundant motor tasks. In recent research we showed that Donders' law also holds for human wrist during pointing tasks, and that it is heavily perturbed when interacting with a highly back-drivable state-of-the-art rehabilitation robot. We hypothesized that this depends on the excessive mechanical impedance of the Pronation/Supination (PS) joint of the robot and in this work we analyzed the effects of its reduction. To this end we deployed a basic force control scheme, which minimizes human-robot interaction force. This resulted in a 70% reduction of the inertia in PS joint and in decrease of 81% and 78% of the interaction torques during 1-DOF and 3-DOFs tasks. To assess the effects on human motor strategies, pointing tasks were performed by three subjects with a lightweight handheld device, interacting with the robot using its standard PD control (setting impedance to zero) and with the force-controlled robot. We quantified Donders' law as 2-dimensional surfaces in the 3-dimensional configuration space of rotations. Results revealed that the subject-specific features of Donders' surfaces reappeared after the reduction of robot impedance obtained via the force control

    Neuroplastic Changes Following Brain Ischemia and their Contribution to Stroke Recovery: Novel Approaches in Neurorehabilitation

    Get PDF
    Ischemic damage to the brain triggers substantial reorganization of spared areas and pathways, which is associated with limited, spontaneous restoration of function. A better understanding of this plastic remodeling is crucial to develop more effective strategies for stroke rehabilitation. In this review article, we discuss advances in the comprehension of post-stroke network reorganization in patients and animal models. We first focus on rodent studies that have shed light on the mechanisms underlying neuronal remodeling in the perilesional area and contralesional hemisphere after motor cortex infarcts. Analysis of electrophysiological data has demonstrated brain-wide alterations in functional connectivity in both hemispheres, well beyond the infarcted area. We then illustrate the potential use of non-invasive brain stimulation (NIBS) techniques to boost recovery. We finally discuss rehabilitative protocols based on robotic devices as a tool to promote endogenous plasticity and functional restoration

    Brain computer interface based robotic rehabilitation with online modification of task speed

    Get PDF
    We present a systematic approach that enables online modification/adaptation of robot assisted rehabilitation exercises by continuously monitoring intention levels of patients utilizing an electroencephalogram (EEG) based Brain-Computer Interface (BCI). In particular, we use Linear Discriminant Analysis (LDA) to classify event-related synchronization (ERS) and desynchronization (ERD) patterns associated with motor imagery; however, instead of providing a binary classification output, we utilize posterior probabilities extracted from LDA classifier as the continuous-valued outputs to control a rehabilitation robot. Passive velocity field control (PVFC) is used as the underlying robot controller to map instantaneous levels of motor imagery during the movement to the speed of contour following tasks. In other words, PVFC changes the speed of contour following tasks with respect to intention levels of motor imagery. PVFC also allows decoupling of the task and the speed of the task from each other, and ensures coupled stability of the overall robot patient system. The proposed framework is implemented on AssistOn-Mobile - a series elastic actuator based on a holonomic mobile platform, and feasibility studies with healthy volunteers have been conducted test effectiveness of the proposed approach. Giving patients online control over the speed of the task, the proposed approach ensures active involvement of patients throughout exercise routines and has the potential to increase the efficacy of robot assisted therapies

    Detection of intention level in response to task difficulty from EEG signals

    Get PDF
    We present an approach that enables detecting intention levels of subjects in response to task difficulty utilizing an electroencephalogram (EEG) based brain-computer interface (BCI). In particular, we use linear discriminant analysis (LDA) to classify event-related synchronization (ERS) and desynchronization (ERD) patterns associated with right elbow flexion and extension movements, while lifting different weights. We observe that it is possible to classify tasks of varying difficulty based on EEG signals. Additionally, we also present a correlation analysis between intention levels detected from EEG and surface electromyogram (sEMG) signals. Our experimental results suggest that it is possible to extract the intention level information from EEG signals in response to task difficulty and indicate some level of correlation between EEG and EMG. With a view towards detecting patients' intention levels during rehabilitation therapies, the proposed approach has the potential to ensure active involvement of patients throughout exercise routines and increase the efficacy of robot assisted therapies

    Voltage stability analysis of load buses in electric power system using adaptive neuro-fuzzy inference system (anfis) and probabilistic neural network (pnn)

    Get PDF
    This paper presents the application of neural networks for analysing voltage stability of load buses in electric power system. Voltage stability margin (VSM) and load power margin (LPM) are used as the indicators for analysing voltage stability. The neural networks used in this research are divided into two types. The first type is using the neural network to predict the values of VSM and LPM. Multilayer perceptron back propagation (MLPBP) neural network and adaptive neuro-fuzzy inference system (ANFIS) will be used. The second type is to classify the values of VSM and LPM using the probabilistic neural network (PNN). The IEEE 30-bus system has been chosen as the reference electrical power system. All of the neural network-based models used in this research is developed using MATLAB

    A short curriculum of the robotics and technology of computer lab

    Get PDF
    Our research Lab is directed by Prof. Anton Civit. It is an interdisciplinary group of 23 researchers that carry out their teaching and researching labor at the Escuela Politécnica Superior (Higher Polytechnic School) and the Escuela de Ingeniería Informática (Computer Engineering School). The main research fields are: a) Industrial and mobile Robotics, b) Neuro-inspired processing using electronic spikes, c) Embedded and real-time systems, d) Parallel and massive processing computer architecture, d) Information Technologies for rehabilitation, handicapped and elder people, e) Web accessibility and usability In this paper, the Lab history is presented and its main publications and research projects over the last few years are summarized.Nuestro grupo de investigación está liderado por el profesor Civit. Somos un grupo multidisciplinar de 23 investigadores que realizan su labor docente e investigadora en la Escuela Politécnica Superior y en Escuela de Ingeniería Informática. Las principales líneas de investigaciones son: a) Robótica industrial y móvil. b) Procesamiento neuro-inspirado basado en pulsos electrónicos. c) Sistemas empotrados y de tiempo real. d) Arquitecturas paralelas y de procesamiento masivo. e) Tecnología de la información aplicada a la discapacidad, rehabilitación y a las personas mayores. f) Usabilidad y accesibilidad Web. En este artículo se reseña la historia del grupo y se resumen las principales publicaciones y proyectos que ha conseguido en los últimos años

    Technology-assisted stroke rehabilitation in Mexico: a pilot randomized trial comparing traditional therapy to circuit training in a Robot/technology-assisted therapy gym

    Get PDF
    Background Stroke rehabilitation in low- and middle-income countries, such as Mexico, is often hampered by lack of clinical resources and funding. To provide a cost-effective solution for comprehensive post-stroke rehabilitation that can alleviate the need for one-on-one physical or occupational therapy, in lower and upper extremities, we proposed and implemented a technology-assisted rehabilitation gymnasium in Chihuahua, Mexico. The Gymnasium for Robotic Rehabilitation (Robot Gym) consisted of low- and high-tech systems for upper and lower limb rehabilitation. Our hypothesis is that the Robot Gym can provide a cost- and labor-efficient alternative for post-stroke rehabilitation, while being more or as effective as traditional physical and occupational therapy approaches. Methods A typical group of stroke patients was randomly allocated to an intervention (n = 10) or a control group (n = 10). The intervention group received rehabilitation using the devices in the Robot Gym, whereas the control group (n = 10) received time-matched standard care. All of the study subjects were subjected to 24 two-hour therapy sessions over a period of 6 to 8 weeks. Several clinical assessments tests for upper and lower extremities were used to evaluate motor function pre- and post-intervention. A cost analysis was done to compare the cost effectiveness for both therapies. Results No significant differences were observed when comparing the results of the pre-intervention Mini-mental, Brunnstrom Test, and Geriatric Depression Scale Test, showing that both groups were functionally similar prior to the intervention. Although, both training groups were functionally equivalent, they had a significant age difference. The results of all of the upper extremity tests showed an improvement in function in both groups with no statistically significant differences between the groups. The Fugl-Meyer and the 10 Meters Walk lower extremity tests showed greater improvement in the intervention group compared to the control group. On the Time Up and Go Test, no statistically significant differences were observed pre- and post-intervention when comparing the control and the intervention groups. For the 6 Minute Walk Test, both groups presented a statistically significant difference pre- and post-intervention, showing progress in their performance. The robot gym therapy was more cost-effective than the traditional one-to-one therapy used during this study in that it enabled therapist to train up to 1.5 to 6 times more patients for the approximately same cost in the long term. Conclusions The results of this study showed that the patients that received therapy using the Robot Gym had enhanced functionality in the upper extremity tests similar to patients in the control group. In the lower extremity tests, the intervention patients showed more improvement than those subjected to traditional therapy. These results support that the Robot Gym can be as effective as traditional therapy for stroke patients, presenting a more cost- and labor-efficient option for countries with scarce clinical resources and funding. Trial registration ISRCTN98578807

    Feasibility of Manual Teach-and-Replay and Continuous Impedance Shaping for Robotic Locomotor Training Following Spinal Cord Injury

    Get PDF
    Robotic gait training is an emerging technique for retraining walking ability following spinal cord injury (SCI). A key challenge in this training is determining an appropriate stepping trajectory and level of assistance for each patient, since patients have a wide range of sizes and impairment levels. Here, we demonstrate how a lightweight yet powerful robot can record subject-specific, trainer-induced leg trajectories during manually assisted stepping, then immediately replay those trajectories. Replay of the subject-specific trajectories reduced the effort required by the trainer during manual assistance, yet still generated similar patterns of muscle activation for six subjects with a chronic SCI. We also demonstrate how the impedance of the robot can be adjusted on a step-by-step basis with an error-based, learning law. This impedance-shaping algorithm adapted the robot's impedance so that the robot assisted only in the regions of the step trajectory where the subject consistently exhibited errors. The result was that the subjects stepped with greater variability, while still maintaining a physiologic gait pattern. These results are further steps toward tailoring robotic gait training to the needs of individual patients
    corecore