659 research outputs found

    Tactile-STAR: A Novel Tactile STimulator And Recorder System for Evaluating and Improving Tactile Perception

    Get PDF
    Many neurological diseases impair the motor and somatosensory systems. While several different technologies are used in clinical practice to assess and improve motor functions, somatosensation is evaluated subjectively with qualitative clinical scales. Treatment of somatosensory deficits has received limited attention. To bridge the gap between the assessment and training of motor vs. somatosensory abilities, we designed, developed, and tested a novel, low-cost, two-component (bimanual) mechatronic system targeting tactile somatosensation: the Tactile-STAR—a tactile stimulator and recorder. The stimulator is an actuated pantograph structure driven by two servomotors, with an end-effector covered by a rubber material that can apply two different types of skin stimulation: brush and stretch. The stimulator has a modular design, and can be used to test the tactile perception in different parts of the body such as the hand, arm, leg, big toe, etc. The recorder is a passive pantograph that can measure hand motion using two potentiometers. The recorder can serve multiple purposes: participants can move its handle to match the direction and amplitude of the tactile stimulator, or they can use it as a master manipulator to control the tactile stimulator as a slave. Our ultimate goal is to assess and affect tactile acuity and somatosensory deficits. To demonstrate the feasibility of our novel system, we tested the Tactile-STAR with 16 healthy individuals and with three stroke survivors using the skin-brush stimulation. We verified that the system enables the mapping of tactile perception on the hand in both populations. We also tested the extent to which 30 min of training in healthy individuals led to an improvement of tactile perception. The results provide a first demonstration of the ability of this new system to characterize tactile perception in healthy individuals, as well as a quantification of the magnitude and pattern of tactile impairment in a small cohort of stroke survivors. The finding that short-term training with Tactile-STARcan improve the acuity of tactile perception in healthy individuals suggests that Tactile-STAR may have utility as a therapeutic intervention for somatosensory deficits

    Robotics-assisted Visual-motor Training Influences Arm Position Sense in Three-dimensional Space

    Get PDF
    Background Performing activities of daily living depends, among other factors, on awareness of the position and movements of limbs. Neural injuries, such as stroke, might negatively affect such an awareness and, consequently, lead to degrading the quality of life and lengthening the motor recovery process. With the goal of improving the sense of hand position in three-dimensional (3D) space, we investigate the effects of integrating a pertinent training component within a robotic reaching task. Methods In the proof-of-concept study presented in this paper, 12 healthy participants, during a single session, used their dominant hand to attempt reaching without vision to two targets in 3D space, which were placed at locations that resembled the functional task of self-feeding. After each attempt, participants received visual and haptic feedback about their hand’s position to accurately locate the target. Performance was evaluated at the beginning and end of each session during an assessment in which participants reached without visual nor haptic feedback to three targets: the same two targets employed during the training phase and an additional one to evaluate the generalization of training. Results Collected data showed a statistically significant [39.81% (p=0.001)] reduction of end-position reaching error when results of reaching to all targets were combined. End-position error to the generalization target, although not statistically significant, was reduced by 15.47%. Conclusions These results provide support for the effectiveness of combining an arm position sense training component with functional motor tasks, which could be implemented in the design of future robot-assisted rehabilitation paradigms to potentially expedite the recovery process of individuals with neurological injuries

    EEG and ECoG features for Brain Computer Interface in Stroke Rehabilitation

    Get PDF
    The ability of non-invasive Brain-Computer Interface (BCI) to control an exoskeleton was used for motor rehabilitation in stroke patients or as an assistive device for the paralyzed. However, there is still a need to create a more reliable BCI that could be used to control several degrees of Freedom (DoFs) that could improve rehabilitation results. Decoding different movements from the same limb, high accuracy and reliability are some of the main difficulties when using conventional EEG-based BCIs and the challenges we tackled in this thesis. In this PhD thesis, we investigated that the classification of several functional hand reaching movements from the same limb using EEG is possible with acceptable accuracy. Moreover, we investigated how the recalibration could affect the classification results. For this reason, we tested the recalibration in each multi-class decoding for within session, recalibrated between-sessions, and between sessions. It was shown the great influence of recalibrating the generated classifier with data from the current session to improve stability and reliability of the decoding. Moreover, we used a multiclass extension of the Filter Bank Common Spatial Patterns (FBCSP) to improve the decoding accuracy based on features and compared it to our previous study using CSP. Sensorimotor-rhythm-based BCI systems have been used within the same frequency ranges as a way to influence brain plasticity or controlling external devices. However, neural oscillations have shown to synchronize activity according to motor and cognitive functions. For this reason, the existence of cross-frequency interactions produces oscillations with different frequencies in neural networks. In this PhD, we investigated for the first time the existence of cross-frequency coupling during rest and movement using ECoG in chronic stroke patients. We found that there is an exaggerated phase-amplitude coupling between the phase of alpha frequency and the amplitude of gamma frequency, which can be used as feature or target for neurofeedback interventions using BCIs. This coupling has been also reported in another neurological disorder affecting motor function (Parkinson and dystonia) but, to date, it has not been investigated in stroke patients. This finding might change the future design of assistive or therapeuthic BCI systems for motor restoration in stroke patients

    Investigating the Effects of Subclinical Neck Pain, Cervical Treatment, and Neck Muscle Fatigue on Wrist Joint Position Sense

    Get PDF
    The purpose of this work was to evaluate the effects of neck pain, cervical treatment, and neck muscle fatigue on joint position sense of the wrist. 12 healthy participants and 12 participants with chronic subclinical neck pain were recruited. Participants took part in two sessions, separated by 48 hours. On the first day, participants preformed two wrist proprioception sessions using a haptic robotic device separated by an isometric cervical extensor fatigue protocol. On the second day participants performed an additional two proprioception sessions, this time separated either by a neck treatment (pain group) or 20 minutes of rest (control group). Each session consisted of 12 trials; 6 in wrist flexion and 6 in wrist extension. Matching error, error bias and variability were measured for each trial. Kinematic data for each trial was recorded from the robotic device and analyzed. Results showed significantly higher error scores for the pain group when compared to the control group at baseline (p=<0.05). Joint position error scores increased significantly in the control group after the fatigue protocol (p= <0.05). Error scores for the pain group decreased significantly after a single treatment session (p= <0.05). This study confirms that altered afferent input from the neck (due to pain and/or fatigue) can influence wrist joint position sense (JPS). Furthermore, the results suggest that a single treatment can improve wrist JPS accuracy

    Maximizing the Effects of Passive Training on Visuomotor Adaptation By Incorporating Other Motor Learning Strategies

    Get PDF
    Passive training has been shown to be an effective rehabilitation approach for stroke survivors, especially for those who suffer from severe control loss or complete paralysis. However, the effectiveness of the treatments that utilize passive assist training is still low. The goal of this dissertation was to develop a training condition that can maximize the effects of passive training on motor learning by combining its effect with other motor learning strategies. To achieve this goal, two specific aims were pursued: one aim was to determine the effects of passive training on learning a visuomotor adaptation task; and the other aim was to determine the effects of passive training in combination with other strategies on learning a visuomotor adaptation task. Experimental results indicated that passive training has a positive effect on visuomotor learning. Furthermore, it was confirmed that a training condition consisting of action observation and passive training leads to significant performance gains beyond what either intervention alone can do. This suggests that passive training could elicit motor representational changes, inducing instance-reliant learning process (use-dependent plasticity) that encodes motor instances associated with specific effectors and task conditions. The findings from this study show great potential for developing specific rehabilitation protocols that utilize passive training and action observation together for severely impaired stroke patients in the future

    Upper limb proprioceptive sensitivity in three-dimensional space: effects of direction, posture, and exogenous neuromodulation

    Get PDF
    abstract: Proprioception is the sense of body position, movement, force, and effort. Loss of proprioception can affect planning and control of limb and body movements, negatively impacting activities of daily living and quality of life. Assessments employing planar robots have shown that proprioceptive sensitivity is directionally dependent within the horizontal plane however, few studies have looked at proprioceptive sensitivity in 3d space. In addition, the extent to which proprioceptive sensitivity is modifiable by factors such as exogenous neuromodulation is unclear. To investigate proprioceptive sensitivity in 3d we developed a novel experimental paradigm employing a 7-DoF robot arm, which enables reliable testing of arm proprioception along arbitrary paths in 3d space, including vertical motion which has previously been neglected. A participant’s right arm was coupled to a trough held by the robot that stabilized the wrist and forearm, allowing for changes in configuration only at the elbow and shoulder. Sensitivity to imposed displacements of the endpoint of the arm were evaluated using a “same/different” task, where participant’s hands were moved 1-4 cm from a previously visited reference position. A measure of sensitivity (d’) was compared across 6 movement directions and between 2 postures. For all directions, sensitivity increased monotonically as the distance from the reference location increased. Sensitivity was also shown to be anisotropic (directionally dependent) which has implications for our understanding of the planning and control of reaching movements in 3d space. The effect of neuromodulation on proprioceptive sensitivity was assessed using transcutaneous electrical nerve stimulation (TENS), which has been shown to have beneficial effects on human cognitive and sensorimotor performance in other contexts. In this pilot study the effects of two frequencies (30hz and 300hz) and three electrode configurations were examined. No effect of electrode configuration was found, however sensitivity with 30hz stimulation was significantly lower than with 300hz stimulation (which was similar to sensitivity without stimulation). Although TENS was shown to modulate proprioceptive sensitivity, additional experiments are required to determine if TENS can produce enhancement rather than depression of sensitivity which would have positive implications for rehabilitation of proprioceptive deficits arising from stroke and other disorders.Dissertation/ThesisDoctoral Dissertation Neuroscience 201

    A New 4-DOF Robot for Rehabilitation of Knee and Ankle-Foot Complex: Simulation and Experiment

    Full text link
    Stationary robotic trainers are lower limb rehab robots which often incorporate an exoskeleton attached to a stationary base. The issue observed in the stationery trainers for simultaneous knee and ankle-foot complex joints is that they restrict the natural motion of ankle-foot in the rehab trainings due to the insufficient Degrees of Freedom (DOFs) of these trainers. A new stationary knee-ankle-foot rehab robot with all necessary DOFs is developed here. A typical rehab training is first implemented in simulation, and then tested on a healthy subject. Results show that the proposed system functions naturally and meets the requirements of the desired rehab training.Comment: 23 pages, 14 figure

    Tactile-STAR: A novel tactile STimulator And Recorder system for evaluating and improving tactile perception

    Get PDF
    Many neurological diseases impair the motor and somatosensory systems. While several different technologies are used in clinical practice to assess and improve motor functions, somatosensation is evaluated subjectively with qualitative clinical scales. Treatment of somatosensory deficits has received limited attention. To bridge the gap between the assessment and training of motor vs. somatosensory abilities, we designed, developed, and tested a novel, low-cost, two-component (bimanual) mechatronic system targeting tactile somatosensation: the Tactile-STAR\u2014a tactile stimulator and recorder. The stimulator is an actuated pantograph structure driven by two servomotors, with an end-effector covered by a rubber material that can apply two different types of skin stimulation: brush and stretch. The stimulator has a modular design, and can be used to test the tactile perception in different parts of the body such as the hand, arm, leg, big toe, etc. The recorder is a passive pantograph that can measure hand motion using two potentiometers. The recorder can serve multiple purposes: participants can move its handle to match the direction and amplitude of the tactile stimulator, or they can use it as a master manipulator to control the tactile stimulator as a slave. Our ultimate goal is to assess and affect tactile acuity and somatosensory deficits. To demonstrate the feasibility of our novel system, we tested the Tactile-STAR with 16 healthy individuals and with three stroke survivors using the skin-brush stimulation. We verified that the system enables the mapping of tactile perception on the hand in both populations. We also tested the extent to which 30 min of training in healthy individuals led to an improvement of tactile perception. The results provide a first demonstration of the ability of this new system to characterize tactile perception in healthy individuals, as well as a quantification of the magnitude and pattern of tactile impairment in a small cohort of stroke survivors. The finding that short-term training with Tactile-STAR can improve the acuity of tactile perception in healthy individuals suggests that Tactile-STAR may have utility as a therapeutic intervention for somatosensory deficits

    The interplay between movement and perception: how interaction can influence sensorimotor performance and neuromotor recovery

    Get PDF
    openMovement and perception interact continuously in daily activities. Motor output changes the outside world and affect perceptual representations. Similarly, perception has consequences on movement. Nevertheless, how movement and perception influence each other and share information is still an open question. Mappings from movement to perceptual outcome and vice versa change continuously throughout life. For example, a cerebrovascular accident (stroke) elicits in the nervous system a complex series of reorganization processes at various levels and with different temporal scales. Functional recovery after a stroke seems to be mediated by use-dependent reorganization of the preserved neural circuitry. The goal of this thesis is to discuss how interaction with the environment can influence the progress of both sensorimotor performance and neuromotor recovery. I investigate how individuals develop an implicit knowledge of the ways motor outputs regularly correlate with changes in sensory inputs, by interacting with the environment and experiencing the perceptual consequences of self-generated movements. Further, I applied this paradigm to model the exercise-based neurorehabilitation in stroke survivors, which aims at gradually improving both perceptual and motor performance through repeated exercise. The scientific findings of this thesis indicate that motor learning resolve visual perceptual uncertainty and contributes to persistent changes in visual and somatosensory perception. Moreover, computational neurorehabilitation may help to identify the underlying mechanisms of both motor and perceptual recovery, and may lead to more personalized therapies.openXXXII CICLO - BIOINGEGNERIA E ROBOTICA - BIOENGINEERING AND ROBOTICS - Bioengineering and bioelectronicsSedda, Giuli
    • …
    corecore