111 research outputs found

    Adaptive and intelligent navigation of autonomous planetary rovers - A survey

    Get PDF
    The application of robotics and autonomous systems in space has increased dramatically. The ongoing Mars rover mission involving the Curiosity rover, along with the success of its predecessors, is a key milestone that showcases the existing capabilities of robotic technology. Nevertheless, there has still been a heavy reliance on human tele-operators to drive these systems. Reducing the reliance on human experts for navigational tasks on Mars remains a major challenge due to the harsh and complex nature of the Martian terrains. The development of a truly autonomous rover system with the capability to be effectively navigated in such environments requires intelligent and adaptive methods fitting for a system with limited resources. This paper surveys a representative selection of work applicable to autonomous planetary rover navigation, discussing some ongoing challenges and promising future research directions from the perspectives of the authors

    Three Dimensional UAV Positioning for Dynamic UAV-to-Car Communications

    Full text link
    [EN] In areas with limited infrastructure, Unmanned Aerial Vehicles (UAVs) can come in handy as relays for car-to-car communications. Since UAVs are able to fully explore a three-dimensional environment while flying, communications that involve them can be affected by the irregularity of the terrains, that in turn can cause path loss by acting as obstacles. Accounting for this phenomenon, we propose a UAV positioning technique that relies on optimization algorithms to improve the support for vehicular communications. Simulation results show that the best position of the UAV can be timely determined considering the dynamic movement of the cars. Our technique takes into account the current flight altitude, the position of the cars on the ground, and the existing flight restrictions.This work was partially supported by the Ministerio de Ciencia, Innovación y Universidades, Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, Proyectos I+D+I 2018 , Spain, under Grant RTI2018-096384-B-I00, and grant BES-2015-075988, Ayudas para contratos predoctorales 2015.Hadiwardoyo, SA.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Krinkin, K.; Klionskiy, D.; Hernández-Orallo, E.; Manzoni, P. (2020). Three Dimensional UAV Positioning for Dynamic UAV-to-Car Communications. Sensors. 20(2):1-18. https://doi.org/10.3390/s20020356S11820

    Politiek

    No full text

    Global Localization based on Evolutionary Optimization Algorithms for Indoor and Underground Environments

    Get PDF
    Mención Internacional en el título de doctorA fully autonomous robot is defined by its capability to sense, understand and move within the environment to perform a specific task. These qualities are included within the concept of navigation. However, among them, a basic transcendent one is localization, the capacity of the system to know its position regarding its surroundings. Therefore, the localization issue could be defined as searching the robot’s coordinates and rotation angles within a known environment. In this thesis, the particular case of Global Localization is addressed, when no information about the initial position is known, and the robot relies only on its sensors. This work aims to develop several tools that allow the system to locate in the two most usual geometric map representations: occupancy maps and Point Clouds. The former divides the dimensional space into equally-sized cells coded with a binary value distinguishing between free and occupied space. Point Clouds define obstacles and environment features as a sparse set of points in the space, commonly measured through a laser sensor. In this work, various algorithms are presented to search for that position through laser measurements only, in contrast with more usual methods that combine external information with motion information of the robot, odometry. Therefore, the system is capable of finding its own position in indoor environments, with no necessity of external positioning and without the influence of the uncertainty that motion sensors typically induce. Our solution is addressed by implementing various stochastic optimization algorithms or Meta-heuristics, specifically those bio-inspired or commonly known as Evolutionary Algorithms. Inspired by natural phenomena, these algorithms are based on the evolution of a series of particles or population members towards a solution through the optimization of a cost or fitness function that defines the problem. The implemented algorithms are Differential Evolution, Particle Swarm Optimization, and Invasive Weed Optimization, which try to mimic the behavior of evolution through mutation, the movement of swarms or flocks of animals, and the colonizing behavior of invasive species of plants respectively. The different implementations address the necessity to parameterize these algorithms for a wide search space as a complete three-dimensional map, with exploratory behavior and the convergence conditions that terminate the search. The process is a recursive optimum estimation search, so the solution is unknown. These implementations address the optimum localization search procedure by comparing the laser measurements from the real position with the one obtained from each candidate particle in the known map. The cost function evaluates this similarity between real and estimated measurements and, therefore, is the function that defines the problem to optimize. The common approach in localization or mapping using laser sensors is to establish the mean square error or the absolute error between laser measurements as an optimization function. In this work, a different perspective is introduced by benefiting from statistical distance or divergences, utilized to describe the similarity between probability distributions. By modeling the laser sensor as a probability distribution over the measured distance, the algorithm can benefit from the asymmetries provided by these divergences to favor or penalize different situations. Hence, how the laser scans differ and not only how much can be evaluated. The results obtained in different maps, simulated and real, prove that the Global Localization issue is successfully solved through these methods, both in position and orientation. The implementation of divergence-based weighted cost functions provides great robustness and accuracy to the localization filters and optimal response before different sources and noise levels from sensor measurements, the environment, or the presence of obstacles that are not registered in the map.Lo que define a un robot completamente autónomo es su capacidad para percibir el entorno, comprenderlo y poder desplazarse en ´el para realizar las tareas encomendadas. Estas cualidades se engloban dentro del concepto de la navegación, pero entre todas ellas la más básica y de la que dependen en buena parte el resto es la localización, la capacidad del sistema de conocer su posición respecto al entorno que lo rodea. De esta forma el problema de la localización se podría definir como la búsqueda de las coordenadas de posición y los ángulos de orientación de un robot móvil dentro de un entorno conocido. En esta tesis se aborda el caso particular de la localización global, cuando no existe información inicial alguna y el sistema depende únicamente de sus sensores. El objetivo de este trabajo es el desarrollo de varias herramientas que permitan que el sistema encuentre la localización en la que se encuentra respecto a los dos tipos de mapa más comúnmente utilizados para representar el entorno: los mapas de ocupación y las nubes de puntos. Los primeros subdividen el espacio en celdas de igual tamaño cuyo valor se define de forma binaria entre espacio libre y ocupado. Las nubes de puntos definen los obstáculos como una serie dispersa de puntos en el espacio comúnmente medidos a través de un láser. En este trabajo se presentan varios algoritmos para la búsqueda de esa posición utilizando únicamente las medidas de este sensor láser, en contraste con los métodos más habituales que combinan información externa con información propia del movimiento del robot, la odometría. De esta forma el sistema es capaz de encontrar su posición en entornos interiores sin depender de posicionamiento externo y sin verse influenciado por la deriva típica que inducen los sensores de movimiento. La solución se afronta mediante la implementación de varios tipos de algoritmos estocásticos de optimización o Meta-heurísticas, en concreto entre los denominados bio-inspirados o comúnmente conocidos como Algoritmos Evolutivos. Estos algoritmos, inspirados en varios fenómenos de la naturaleza, se basan en la evolución de una serie de partículas o población hacia una solución en base a la optimización de una función de coste que define el problema. Los algoritmos implementados en este trabajo son Differential Evolution, Particle Swarm Optimization e Invasive Weed Optimization, que tratan de imitar el comportamiento de la evolución por mutación, el movimiento de enjambres o bandas de animales y la colonización por parte de especies invasivas de plantas respectivamente. Las distintas implementaciones abordan la necesidad de parametrizar estos algoritmos para un espacio de búsqueda muy amplio como es un mapa completo, con la necesidad de que su comportamiento sea muy exploratorio, así como las condiciones de convergencia que definen el fin de la búsqueda ya que al ser un proceso recursivo de estimación la solución no es conocida. Estos algoritmos plantean la forma de buscar la localización ´optima del robot mediante la comparación de las medidas del láser en la posición real con lo esperado en la posición de cada una de esas partículas teniendo en cuenta el mapa conocido. La función de coste evalúa esa semejanza entre las medidas reales y estimadas y por tanto, es la función que define el problema. Las funciones típicamente utilizadas tanto en mapeado como localización mediante el uso de sensores láser de distancia son el error cuadrático medio o el error absoluto entre distancia estimada y real. En este trabajo se presenta una perspectiva diferente, aprovechando las distancias estadísticas o divergencias, utilizadas para establecer la semejanza entre distribuciones probabilísticas. Modelando el sensor como una distribución de probabilidad entorno a la medida aportada por el láser, se puede aprovechar la asimetría de esas divergencias para favorecer o penalizar distintas situaciones. De esta forma se evalúa como difieren las medias y no solo cuanto. Los resultados obtenidos en distintos mapas tanto simulados como reales demuestran que el problema de la localización se resuelve con éxito mediante estos métodos tanto respecto al error de estimación de la posición como de la orientación del robot. El uso de las divergencias y su implementación en una función de coste ponderada proporciona gran robustez y precisión al filtro de localización y gran respuesta ante diferentes fuentes y niveles de ruido, tanto de la propia medida del sensor, del ambiente y de obstáculos no modelados en el mapa del entorno.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Fabio Bonsignorio.- Secretario: María Dolores Blanco Rojas.- Vocal: Alberto Brunete Gonzále

    A review of artificial intelligence applied to path planning in UAV swarms

    Get PDF
    This version of the article has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/ s00521-021-06569-4This is the accepted version of: A. Puente-Castro, D. Rivero, A. Pazos, and E. Fernández-Blanco, "A review of artificial intelligence applied to path planning in UAV swarms", Neural Computing and Applications, vol. 34, pp. 153–170, 2022. https://doi.org/10.1007/s00521-021-06569-4[Abstract]: Path Planning problems with Unmanned Aerial Vehicles (UAVs) are among the most studied knowledge areas in the related literature. However, few of them have been applied to groups of UAVs. The use of swarms allows to speed up the flight time and, thus, reducing the operational costs. When combined with Artificial Intelligence (AI) algorithms, a single system or operator can control all aircraft while optimal paths for each one can be computed. In order to introduce the current situation of these AI-based systems, a review of the most novel and relevant articles was carried out. This review was performed in two steps: first, a summary of the found articles; second, a quantitative analysis of the publications found based on different factors, such as the temporal evolution or the number of articles found based on different criteria. Therefore, this review provides not only a summary of the most recent work but it gives an overview of the trend in the use of AI algorithms in UAV swarms for Path Planning problems. The AI techniques of the articles found can be separated into four main groups based on their technique: reinforcement Learning techniques, Evolutive Computing techniques, Swarm Intelligence techniques, and, Graph Neural Networks. The final results show an increase in publications in recent years and that there is a change in the predominance of the most widely used techniques.This work is supported by Instituto de Salud Carlos III, grant number PI17/01826 (Collaborative Project in Genomic Data Integration (CICLOGEN) funded by the Instituto de Salud Carlos III from the Spanish National plan for Scientific and Technical Research and Innovation 2013–2016 and the European Regional Development Funds (FEDER)—“A way to build Europe.”. This project was also supported by the General Directorate of Culture, Education and University Management of Xunta de Galicia ED431D 2017/16 and “Drug Discovery Galician Network” Ref. ED431G/01 and the “Galician Network for Colorectal Cancer Research” (Ref. ED431D 2017/23). This work was also funded by the grant for the consolidation and structuring of competitive research units (ED431C 2018/49) from the General Directorate of Culture, Education and University Management of Xunta de Galicia, and the CYTED network (PCI2018_093284) funded by the Spanish Ministry of Ministry of Innovation and Science. This project was also supported by the General Directorate of Culture, Education and University Management of Xunta de Galicia “PRACTICUM DIRECT” Ref. IN845D-2020/03.Xunta de Galicia; ED431D 2017/16Xunta de Galicia; ED431G/01Xunta de Galicia; ED431D 2017/23Xunta de Galicia; ED431C 2018/49Xunta de Galicia; IN845D-2020/0

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    Improved terrain type classification using UAV downwash dynamic texture effect

    Get PDF
    The ability to autonomously navigate in an unknown, dynamic environment, while at the same time classifying various terrain types, are significant challenges still faced by the computer vision research community. Addressing these problems is of great interest for the development of collaborative autonomous navigation robots. For example, an Unmanned Aerial Vehicle (UAV) can be used to determine a path, while an Unmanned Surface Vehicle (USV) follows that path to reach the target destination. For the UAV to be able to determine if a path is valid or not, it must be able to identify the type of terrain it is flying over. With the help of its rotor air flow (known as downwash e↵ect), it becomes possible to extract advanced texture features, used for terrain type classification. This dissertation presents a complete analysis on the extraction of static and dynamic texture features, proposing various algorithms and analyzing their pros and cons. A UAV equipped with a single RGB camera was used to capture images and a Multilayer Neural Network was used for the automatic classification of water and non-water-type terrains by means of the downwash e↵ect created by the UAV rotors. The terrain type classification results are then merged into a georeferenced dynamic map, where it is possible to distinguish between water and non-water areas in real time. To improve the algorithms’ processing time, several sequential processes were con verted into parallel processes and executed in the UAV onboard GPU with the CUDA framework achieving speedups up to 10x. A comparison between the processing time of these two processing modes, sequential in the CPU and parallel in the GPU, is also presented in this dissertation. All the algorithms were developed using open-source libraries, and were analyzed and validated both via simulation and real environments. To evaluate the robustness of the proposed algorithms, the studied terrains were tested with and without the presence of the downwash e↵ect. It was concluded that the classifier could be improved by per forming combinations between static and dynamic features, achieving an accuracy higher than 99% in the classification of water and non-water terrain.Dotar equipamentos moveis da funcionalidade de navegação autónoma em ambientes desconhecidos e dinâmicos, ao mesmo tempo que, classificam terrenos do tipo água e não água, são desafios que se colocam atualmente a investigadores na área da visão computacional. As soluções para estes problemas são de grande interesse para a navegação autónoma e a colaboração entre robôs. Por exemplo, um veículo aéreo não tripulado (UAV) pode ser usado para determinar o caminho que um veículo terrestre não tripulado (USV) deve percorrer para alcançar o destino pretendido. Para o UAV conseguir determinar se o caminho é válido ou não, tem de ser capaz de identificar qual o tipo de terreno que está a sobrevoar. Com a ajuda do fluxo de ar gerado pelos motores (conhecido como efeito downwash), é possível extrair características de textura avançadas, que serão usadas para a classificação do tipo de terreno. Esta dissertação apresenta uma análise completa sobre extração de texturas estáticas e dinâmicas, propondo diversos algoritmos e analisando os seus prós e contras. Um UAV equipado com uma única câmera RGB foi usado para capturar as imagens. Para classi ficar automaticamente terrenos do tipo água e não água foi usada uma rede neuronal multicamada e recorreu-se ao efeito de downwash criado pelos motores do UAV. Os re sultados da classificação do tipo de terreno são depois colocados num mapa dinâmico georreferenciado, onde é possível distinguir, em tempo real, terrenos do tipo água e não água. De forma a melhorar o tempo de processamento dos algoritmos desenvolvidos, vários processos sequenciais foram convertidos em processos paralelos e executados na GPU a bordo do UAV, com a ajuda da framework CUDA, tornando o algoritmo até 10x mais rápido. Também são apresentadas nesta dissertação comparações entre o tempo de processamento destes dois modos de processamento, sequencial na CPU e paralelo na GPU. Todos os algoritmos foram desenvolvidos através de bibliotecas open-source, e foram analisados e validados, tanto através de ambientes de simulação como em ambientes reais. Para avaliar a robustez dos algoritmos propostos, os terrenos estudados foram testados com e sem a presença do efeito downwash. Concluiu-se que o classificador pode ser melhorado realizando combinações entre as características de textura estáticas e dinâmicas, alcançando uma precisão superior a 99% na classificação de terrenos do tipo água e não água
    corecore