120 research outputs found

    Vision-Based navigation system for unmanned aerial vehicles

    Get PDF
    Mención Internacional en el título de doctorThe main objective of this dissertation is to provide Unmanned Aerial Vehicles (UAVs) with a robust navigation system; in order to allow the UAVs to perform complex tasks autonomously and in real-time. The proposed algorithms deal with solving the navigation problem for outdoor as well as indoor environments, mainly based on visual information that is captured by monocular cameras. In addition, this dissertation presents the advantages of using the visual sensors as the main source of data, or complementing other sensors in providing useful information; in order to improve the accuracy and the robustness of the sensing purposes. The dissertation mainly covers several research topics based on computer vision techniques: (I) Pose Estimation, to provide a solution for estimating the 6D pose of the UAV. This algorithm is based on the combination of SIFT detector and FREAK descriptor; which maintains the performance of the feature points matching and decreases the computational time. Thereafter, the pose estimation problem is solved based on the decomposition of the world-to-frame and frame-to-frame homographies. (II) Obstacle Detection and Collision Avoidance, in which, the UAV is able to sense and detect the frontal obstacles that are situated in its path. The detection algorithm mimics the human behaviors for detecting the approaching obstacles; by analyzing the size changes of the detected feature points, combined with the expansion ratios of the convex hull constructed around the detected feature points from consecutive frames. Then, by comparing the area ratio of the obstacle and the position of the UAV, the method decides if the detected obstacle may cause a collision. Finally, the algorithm extracts the collision-free zones around the obstacle, and combining with the tracked waypoints, the UAV performs the avoidance maneuver. (III) Navigation Guidance, which generates the waypoints to determine the flight path based on environment and the situated obstacles. Then provide a strategy to follow the path segments and in an efficient way and perform the flight maneuver smoothly. (IV) Visual Servoing, to offer different control solutions (Fuzzy Logic Control (FLC) and PID), based on the obtained visual information; in order to achieve the flight stability as well as to perform the correct maneuver; to avoid the possible collisions and track the waypoints. All the proposed algorithms have been verified with real flights in both indoor and outdoor environments, taking into consideration the visual conditions; such as illumination and textures. The obtained results have been validated against other systems; such as VICON motion capture system, DGPS in the case of pose estimate algorithm. In addition, the proposed algorithms have been compared with several previous works in the state of the art, and are results proves the improvement in the accuracy and the robustness of the proposed algorithms. Finally, this dissertation concludes that the visual sensors have the advantages of lightweight and low consumption and provide reliable information, which is considered as a powerful tool in the navigation systems to increase the autonomy of the UAVs for real-world applications.El objetivo principal de esta tesis es proporcionar Vehiculos Aereos no Tripulados (UAVs) con un sistema de navegacion robusto, para permitir a los UAVs realizar tareas complejas de forma autonoma y en tiempo real. Los algoritmos propuestos tratan de resolver problemas de la navegacion tanto en ambientes interiores como al aire libre basandose principalmente en la informacion visual captada por las camaras monoculares. Ademas, esta tesis doctoral presenta la ventaja de usar sensores visuales bien como fuente principal de datos o complementando a otros sensores en el suministro de informacion util, con el fin de mejorar la precision y la robustez de los procesos de deteccion. La tesis cubre, principalmente, varios temas de investigacion basados en tecnicas de vision por computador: (I) Estimacion de la Posicion y la Orientacion (Pose), para proporcionar una solucion a la estimacion de la posicion y orientacion en 6D del UAV. Este algoritmo se basa en la combinacion del detector SIFT y el descriptor FREAK, que mantiene el desempeno del a funcion de puntos de coincidencia y disminuye el tiempo computacional. De esta manera, se soluciona el problema de la estimacion de la posicion basandose en la descomposicion de las homografias mundo a imagen e imagen a imagen. (II) Deteccion obstaculos y elusion colisiones, donde el UAV es capaz de percibir y detectar los obstaculos frontales que se encuentran en su camino. El algoritmo de deteccion imita comportamientos humanos para detectar los obstaculos que se acercan, mediante el analisis de la magnitud del cambio de los puntos caracteristicos detectados de referencia, combinado con los ratios de expansion de los contornos convexos construidos alrededor de los puntos caracteristicos detectados en frames consecutivos. A continuacion, comparando la proporcion del area del obstaculo y la posicion del UAV, el metodo decide si el obstaculo detectado puede provocar una colision. Por ultimo, el algoritmo extrae las zonas libres de colision alrededor del obstaculo y combinandolo con los puntos de referencia, elUAV realiza la maniobra de evasion. (III) Guiado de navegacion, que genera los puntos de referencia para determinar la trayectoria de vuelo basada en el entorno y en los obstaculos detectados que encuentra. Proporciona una estrategia para seguir los segmentos del trazado de una manera eficiente y realizar la maniobra de vuelo con suavidad. (IV) Guiado por Vision, para ofrecer soluciones de control diferentes (Control de Logica Fuzzy (FLC) y PID), basados en la informacion visual obtenida con el fin de lograr la estabilidad de vuelo, asi como realizar la maniobra correcta para evitar posibles colisiones y seguir los puntos de referencia. Todos los algoritmos propuestos han sido verificados con vuelos reales en ambientes exteriores e interiores, tomando en consideracion condiciones visuales como la iluminacion y las texturas. Los resultados obtenidos han sido validados con otros sistemas: como el sistema de captura de movimiento VICON y DGPS en el caso del algoritmo de estimacion de la posicion y orientacion. Ademas, los algoritmos propuestos han sido comparados con trabajos anteriores recogidos en el estado del arte con resultados que demuestran una mejora de la precision y la robustez de los algoritmos propuestos. Esta tesis doctoral concluye que los sensores visuales tienen las ventajes de tener un peso ligero y un bajo consumo y, proporcionar informacion fiable, lo cual lo hace una poderosa herramienta en los sistemas de navegacion para aumentar la autonomia de los UAVs en aplicaciones del mundo real.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Carlo Regazzoni.- Secretario: Fernando García Fernández.- Vocal: Pascual Campoy Cerver

    Vision Based Collaborative Localization and Path Planning for Micro Aerial Vehicles

    Get PDF
    Autonomous micro aerial vehicles (MAV) have gained immense popularity in both the commercial and research worlds over the last few years. Due to their small size and agility, MAVs are considered to have great potential for civil and industrial tasks such as photography, search and rescue, exploration, inspection and surveillance. Autonomy on MAVs usually involves solving the major problems of localization and path planning. While GPS is a popular choice for localization for many MAV platforms today, it suffers from issues such as inaccurate estimation around large structures, and complete unavailability in remote areas/indoor scenarios. From the alternative sensing mechanisms, cameras arise as an attractive choice to be an onboard sensor due to the richness of information captured, along with small size and inexpensiveness. Another consideration that comes into picture for micro aerial vehicles is the fact that these small platforms suffer from inability to fly for long amounts of time or carry heavy payload, scenarios that can be solved by allocating a group, or a swarm of MAVs to perform a task than just one. Collaboration between multiple vehicles allows for better accuracy of estimation, task distribution and mission efficiency. Combining these rationales, this dissertation presents collaborative vision based localization and path planning frameworks. Although these were created as two separate steps, the ideal application would contain both of them as a loosely coupled localization and planning algorithm. A forward-facing monocular camera onboard each MAV is considered as the sole sensor for computing pose estimates. With this minimal setup, this dissertation first investigates methods to perform feature-based localization, with the possibility of fusing two types of localization data: one that is computed onboard each MAV, and the other that comes from relative measurements between the vehicles. Feature based methods were preferred over direct methods for vision because of the relative ease with which tangible data packets can be transferred between vehicles, and because feature data allows for minimal data transfer compared to large images. Inspired by techniques from multiple view geometry and structure from motion, this localization algorithm presents a decentralized full 6-degree of freedom pose estimation method complete with a consistent fusion methodology to obtain robust estimates only at discrete instants, thus not requiring constant communication between vehicles. This method was validated on image data obtained from high fidelity simulations as well as real life MAV tests. These vision based collaborative constraints were also applied to the problem of path planning with a focus on performing uncertainty-aware planning, where the algorithm is responsible for generating not only a valid, collision-free path, but also making sure that this path allows for successful localization throughout. As joint multi-robot planning can be a computationally intractable problem, planning was divided into two steps from a vision-aware perspective. As the first step for improving localization performance is having access to a better map of features, a next-best-multi-view algorithm was developed which can compute the best viewpoints for multiple vehicles that can improve an existing sparse reconstruction. This algorithm contains a cost function containing vision-based heuristics that determines the quality of expected images from any set of viewpoints; which is minimized through an efficient evolutionary strategy known as Covariance Matrix Adaption (CMA-ES) that can handle very high dimensional sample spaces. In the second step, a sampling based planner called Vision-Aware RRT* (VA-RRT*) was developed which includes similar vision heuristics in an information gain based framework in order to drive individual vehicles towards areas that can benefit feature tracking and thus localization. Both steps of the planning framework were tested and validated using results from simulation

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    Vision Based Collaborative Localization and Path Planning for Micro Aerial Vehicles

    Get PDF
    Autonomous micro aerial vehicles (MAV) have gained immense popularity in both the commercial and research worlds over the last few years. Due to their small size and agility, MAVs are considered to have great potential for civil and industrial tasks such as photography, search and rescue, exploration, inspection and surveillance. Autonomy on MAVs usually involves solving the major problems of localization and path planning. While GPS is a popular choice for localization for many MAV platforms today, it suffers from issues such as inaccurate estimation around large structures, and complete unavailability in remote areas/indoor scenarios. From the alternative sensing mechanisms, cameras arise as an attractive choice to be an onboard sensor due to the richness of information captured, along with small size and inexpensiveness. Another consideration that comes into picture for micro aerial vehicles is the fact that these small platforms suffer from inability to fly for long amounts of time or carry heavy payload, scenarios that can be solved by allocating a group, or a swarm of MAVs to perform a task than just one. Collaboration between multiple vehicles allows for better accuracy of estimation, task distribution and mission efficiency. Combining these rationales, this dissertation presents collaborative vision based localization and path planning frameworks. Although these were created as two separate steps, the ideal application would contain both of them as a loosely coupled localization and planning algorithm. A forward-facing monocular camera onboard each MAV is considered as the sole sensor for computing pose estimates. With this minimal setup, this dissertation first investigates methods to perform feature-based localization, with the possibility of fusing two types of localization data: one that is computed onboard each MAV, and the other that comes from relative measurements between the vehicles. Feature based methods were preferred over direct methods for vision because of the relative ease with which tangible data packets can be transferred between vehicles, and because feature data allows for minimal data transfer compared to large images. Inspired by techniques from multiple view geometry and structure from motion, this localization algorithm presents a decentralized full 6-degree of freedom pose estimation method complete with a consistent fusion methodology to obtain robust estimates only at discrete instants, thus not requiring constant communication between vehicles. This method was validated on image data obtained from high fidelity simulations as well as real life MAV tests. These vision based collaborative constraints were also applied to the problem of path planning with a focus on performing uncertainty-aware planning, where the algorithm is responsible for generating not only a valid, collision-free path, but also making sure that this path allows for successful localization throughout. As joint multi-robot planning can be a computationally intractable problem, planning was divided into two steps from a vision-aware perspective. As the first step for improving localization performance is having access to a better map of features, a next-best-multi-view algorithm was developed which can compute the best viewpoints for multiple vehicles that can improve an existing sparse reconstruction. This algorithm contains a cost function containing vision-based heuristics that determines the quality of expected images from any set of viewpoints; which is minimized through an efficient evolutionary strategy known as Covariance Matrix Adaption (CMA-ES) that can handle very high dimensional sample spaces. In the second step, a sampling based planner called Vision-Aware RRT* (VA-RRT*) was developed which includes similar vision heuristics in an information gain based framework in order to drive individual vehicles towards areas that can benefit feature tracking and thus localization. Both steps of the planning framework were tested and validated using results from simulation

    Proprioceptive Localization for Robots

    Get PDF
    Localization is a critical navigation function for mobile robots. Most localization methods employ a global position system (GPS), a lidar, and a camera which are exteroceptive sensors relying on the perception and recognition of landmarks in the environment. However, GPS signals may be unavailable because high-rise buildings may block GPS signals in urban areas. Poor weather and lighting conditions may challenge all exteroceptive sensors. In this dissertation, we focus on proprioceptive localization (PL) methods which refer to a new class of robot egocentric localization methods that do not rely on the perception and recognition of external landmarks. These methods depend on a prior map and proprioceptive sensors such as inertial measurement units (IMUs) and/or wheel encoders which are naturally immune to aforementioned adversary environmental conditions that may hinder exteroceptive sensors. PL is intended to be a low-cost and fallback solution when everything else fails. We first propose a method named proprioceptive localization assisted by magnetoreception (PLAM). PLAM employs a gyroscope and a compass to sense heading changes and matches the heading sequence with a pre-processed heading graph to localize the robot. Not all cases can be successful because degenerated maps may consist of rectangular grid-like streets and the robot may travel in a loop. To analyze these, we use information entropy to model map characteristics and perform both simulation and experiments to find out typical heading and information entropy requirements for localization. We further propose a method which allows continuous localization and is less limited by map degeneracy. Assisted by magnetoreception, we use IMUs and wheel encoders to estimate vehicle trajectory which is used to query a prior known map to obtain location. We named the proposed method as graph-based proprioceptive localization (GBPL). As a robot travels, we extract a sequence of heading-length values for straight segments from the trajectory and match the sequence with a pre-processed heading-length graph (HLG) abstracted from the prior known map to localize the robot under a graph-matching approach. Using HLG information, our location alignment and verification module compensates for trajectory drift, wheel slip, or tire inflation level. %The algorithm runs successfully in finding robot location continuously and achieves localization accuracy at the level that the prior map allows (less than 10m). With the development of communication technology, it becomes possible to leverage vehicle-to-vehicle (V2V) communication to develop a multiple vehicle/robot collaborative localization scheme. Named as collaborative graph-based proprioceptive localization (C-GBPL), we extract heading-length sequence from the trajectory as features. When rendezvousing with other vehicles, the ego vehicle aggregates the features from others and forms a merged query graph. We match the query graph with the HLG to localize the vehicle under a graph-to-graph matching approach. The C-GBPL algorithm significantly outperforms its single-vehicle counterpart in localization speed and robustness to trajectory and map degeneracy. Besides, we propose a PL method with WiFi in the indoor environment targeted at handling inconsistent access points (APs). We develop a windowed majority voting and statistical hypothesis testing-based approach to remove APs with large displacements between reference and query data sets. We refine the localization by applying maximum likelihood estimation method to the closed-form posterior location distribution over the filtered signal strength and AP sets in the time window. Our method achieves a mean localization error of less than 3.7 meters even when 70% of APs are inconsistent

    The 2nd Conference on Remotely Manned Systems (RMS): Technology and Applications

    Get PDF
    Control theory and the design of manipulators, teleoperators, and robots are considered. Applications of remotely manned vehicles to space maintenance and orbital assembly, industry and productivity, undersea operations, and rehabilitation systems are emphasized

    Service robotics and machine learning for close-range remote sensing

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    On Proximity Based Sub-Area Localization

    Get PDF
    A localization system can save lives in the aftermath of an earthquake; position people or valuable assets during a fire in a building; or track airplanes besides many of its other attractive applications. Global Positioning System (GPS) is the most popular localization system, and it can provide 7-10 meters localization accuracy for outdoor users; however, it has certain drawbacks for indoor environments. Alternatively, wireless networks are becoming pervasive and have been densely deployed for communication of various types of devices indoors, exploiting them for the localization of people or other assets is a convenience. Proximity based localization that estimates locations based on closeness to known reference points, coupled with a widely deployed wireless technology, can reduce the cost and effort for localization in local and indoor areas. In this dissertation, we propose a proximity based localization algorithm that exploits knowledge of the overlapping coverages of known monitoring stations. We call this algorithm Sub-Area Localization (SAL). We present a systematic study of proximity-based localization by defining the factors and parameters that affect the localization performance in terms of metrics such as accuracy and efficiency. Then, we demonstrate that SAL can be used in multi-floor buildings to take advantage of the infrastructure elements deployed across floors to reduce the overall cost (in terms of the number of monitoring stations required) without harming accuracy. Finally, we present a case study of how SAL can be used for spatial spectrum detection in wireless cognitive networks

    Cognitive Buildings

    Get PDF
    Cognitive building is a pioneering topic envisioning the future of our built environment. The concept of "cognitive" provides a paradigm shift that steps from the static concept of the building as a container of human activities towards the modernist vision of "machine à habiter" of Le Corbusier, where the technological content adds the capability of learning from users' behavior and environmental variables to adapt itself to achieve major goals such as user comfort, energy-saving, flexible functionality, high durability, and good maintainability. The concept is based on digital frameworks and IoT networks towards the concept of a smart city
    • …
    corecore