2,600 research outputs found

    Modeling, Stability Analysis, and Testing of a Hybrid Docking Simulator

    Full text link
    A hybrid docking simulator is a hardware-in-the-loop (HIL) simulator that includes a hardware element within a numerical simulation loop. One of the goals of performing a HIL simulation at the European Proximity Operation Simulator (EPOS) is the verification and validation of the docking phase in an on-orbit servicing mission.....Comment: 30 papge

    Autonomous Mechanical Assembly on the Space Shuttle: An Overview

    Get PDF
    The space shuttle will be equipped with a pair of 50 ft. manipulators used to handle payloads and to perform mechanical assembly operations. Although current plans call for these manipulators to be operated by a human teleoperator. The possibility of using results from robotics and machine intelligence to automate this shuttle assembly system was investigated. The major components of an autonomous mechanical assembly system are examined, along with the technology base upon which they depend. The state of the art in advanced automation is also assessed

    Space robotics: Recent accomplishments and opportunities for future research

    Get PDF
    The Langley Guidance, Navigation, and Control Technical Committee (GNCTC) was one of six technical committees created in 1991 by the Chief Scientist, Dr. Michael F. Card. During the kickoff meeting Dr. Card charged the chairmen to: (1) establish a cross-Center committee; (2) support at least one workshop in a selected discipline; and (3) prepare a technical paper on recent accomplishments in the discipline and on opportunities for future research. The Guidance, Navigation, and Control Committee was formed and selected for focus on the discipline of Space robotics. This report is a summary of the committee's assessment of recent accomplishments and opportunities for future research. The report is organized as follows. First is an overview of the data sources used by the committee. Next is a description of technical needs identified by the committee followed by recent accomplishments. Opportunities for future research ends the main body of the report. It includes the primary recommendation of the committee that NASA establish a national space facility for the development of space automation and robotics, one element of which is a telerobotic research platform in space. References 1 and 2 are the proceedings of two workshops sponsored by the committee during its June 1991, through May 1992 term. The focus of the committee for the June 1992 - May 1993 term will be to further define to the recommended platform in space and to add an additional discipline which includes aircraft related GN&C issues. To the latter end members performing aircraft related research will be added to the committee. (A preliminary assessment of future opportunities in aircraft-related GN&C research has been included as appendix A.

    Advancements of a MicroSat for On-Orbit Satellite Surgery

    Get PDF
    The concept of a highly articulated microsat to perform in-space construction, assembly, and repair is emerging due to advancements in microelectronics, robotics, and microsatellite technology. The combination of these has led to investigating foundational elements for conducting remote space robotic missions that will enable machines to build machines. The idea goes beyond robotic systems designed to mate specialty-crafted space modules or in-space 3D printed structures. It addresses a means to work with typical flight hardware in this remote, lifeless environment. The work presented in this research has focused on creating a semi-autonomous platform that shares both autonomous GN&C operations with man-in-the-loop telerobotics. The testbed platform contains a means for target capture, attachment, and for conducting technician-like mechanical tasks that include gripping, cutting, and working with fasteners with an interchangeable tool set. As the system evolves, evaluation tests have shown many aspects are feasible such as cutting thermal insulation and wire. For instance, the system can reach into a harness, isolate a 26 ga. wire, and cut it. It has also been able to perform small cuts in thermal insulation membranes. Fasteners are proving to be more challenging due to robotic tool alignment and management of forces

    Technology assessment of advanced automation for space missions

    Get PDF
    Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology

    A lunar base reference mission for the phased implementation of bioregenerative life support system components

    Get PDF
    Previous design efforts of a cost effective and reliable regenerative life support system (RLSS) provided the foundation for the characterization of organisms or 'biological processors' in engineering terms and a methodology was developed for their integration into an engineered ecological LSS in order to minimize the mass flow imbalances between consumers and producers. These techniques for the design and the evaluation of bioregenerative LSS have now been integrated into a lunar base reference mission, emphasizing the phased implementation of components of such a BLSS. In parallel, a designers handbook was compiled from knowledge and experience gained during past design projects to aid in the design and planning of future space missions requiring advanced RLSS technologies. The lunar base reference mission addresses in particular the phased implementation and integration of BLS parts and includes the resulting infrastructure burdens and needs such as mass, power, volume, and structural requirements of the LSS. Also, operational aspects such as manpower requirements and the possible need and application of 'robotics' were addressed

    Machine intelligence and robotics: Report of the NASA study group. Executive summary

    Get PDF
    A brief overview of applications of machine intelligence and robotics in the space program is given. These space exploration robots, global service robots to collect data for public service use on soil conditions, sea states, global crop conditions, weather, geology, disasters, etc., from Earth orbit, space industrialization and processing technologies, and construction of large structures in space. Program options for research, advanced development, and implementation of machine intelligence and robot technology for use in program planning are discussed. A vigorous and long-range program to incorporate and keep pace with state of the art developments in computer technology, both in spaceborne and ground-based computer systems is recommended

    Spline-Locking Screw Fastening Strategy (SLSFS)

    Get PDF
    A fastener was developed by NASA Goddard for efficiently performing assembly, maintenance, and equipment replacement functions in space using either robotic or astronaut means. This fastener, the 'Spline Locking Screw' (SLS) would also have significant commercial value in advanced manufacturing. Commercial (or DoD) products could be manufactured in such a way that their prime subassemblies would be assembled using SLS fasteners. This would permit machines and robots to disconnect and replace these modules/parts with ease, greatly reducing life cycle costs of the products and greatly enhancing the quality, timeliness, and consistency of repairs, upgrades, and remanufacturing. The operation of the basic SLS fastener is detailed, including hardware and test results. Its extension into a comprehensive fastening strategy for NASA use in space is also outlined. Following this, the discussion turns toward potential commercial and government applications and the potential market significance of same
    corecore