124 research outputs found

    The Future of Humanoid Robots

    Get PDF
    This book provides state of the art scientific and engineering research findings and developments in the field of humanoid robotics and its applications. It is expected that humanoids will change the way we interact with machines, and will have the ability to blend perfectly into an environment already designed for humans. The book contains chapters that aim to discover the future abilities of humanoid robots by presenting a variety of integrated research in various scientific and engineering fields, such as locomotion, perception, adaptive behavior, human-robot interaction, neuroscience and machine learning. The book is designed to be accessible and practical, with an emphasis on useful information to those working in the fields of robotics, cognitive science, artificial intelligence, computational methods and other fields of science directly or indirectly related to the development and usage of future humanoid robots. The editor of the book has extensive R&D experience, patents, and publications in the area of humanoid robotics, and his experience is reflected in editing the content of the book

    Development of the huggable social robot Probo: on the conceptual design and software architecture

    Get PDF
    This dissertation presents the development of a huggable social robot named Probo. Probo embodies a stuffed imaginary animal, providing a soft touch and a huggable appearance. Probo's purpose is to serve as a multidisciplinary research platform for human-robot interaction focused on children. In terms of a social robot, Probo is classified as a social interface supporting non-verbal communication. Probo's social skills are thereby limited to a reactive level. To close the gap with higher levels of interaction, an innovative system for shared control with a human operator is introduced. The software architecture de nes a modular structure to incorporate all systems into a single control center. This control center is accompanied with a 3D virtual model of Probo, simulating all motions of the robot and providing a visual feedback to the operator. Additionally, the model allows us to advance on user-testing and evaluation of newly designed systems. The robot reacts on basic input stimuli that it perceives during interaction. The input stimuli, that can be referred to as low-level perceptions, are derived from vision analysis, audio analysis, touch analysis and object identification. The stimuli will influence the attention and homeostatic system, used to de ne the robot's point of attention, current emotional state and corresponding facial expression. The recognition of these facial expressions has been evaluated in various user-studies. To evaluate the collaboration of the software components, a social interactive game for children, Probogotchi, has been developed. To facilitate interaction with children, Probo has an identity and corresponding history. Safety is ensured through Probo's soft embodiment and intrinsic safe actuation systems. To convey the illusion of life in a robotic creature, tools for the creation and management of motion sequences are put into the hands of the operator. All motions generated from operator triggered systems are combined with the motions originating from the autonomous reactive systems. The resulting motion is subsequently smoothened and transmitted to the actuation systems. With future applications to come, Probo is an ideal platform to create a friendly companion for hospitalised children

    High Efficiency Real-Time Sensor and Actuator Control and Data Processing

    Get PDF
    The advances in sensor and actuator technology foster the use of large multitransducer networks in many different fields. The increasing complexity of such networks poses problems in data processing, especially when high-efficiency is required for real-time applications. In fact, multi-transducer data processing usually consists of interconnection and co-operation of several modules devoted to process different tasks. Multi-transducer network modules often include tasks such as control, data acquisition, data filtering interfaces, feature selection and pattern analysis. Heterogeneous techniques derived from chemometrics, neural networks, fuzzy-rules used to implement such tasks may introduce module interconnection and co-operation issues. To help dealing with these problems the author here presents a software library architecture for a dynamic and efficient management of multi-transducer data processing and control techniques. The framework’s base architecture and the implementation details of several extensions are described. Starting from the base models available in the framework core dedicated models for control processes and neural network tools have been derived. The Facial Automaton for Conveying Emotion (FACE) has been used as a test field for the control architecture

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    Design optimisation of shape memory alloy linear actuator applications

    Get PDF
    Shape memory alloy (SMA) actuators have drawn much attention and interest in recent decades due to their unique properties; and, are expected to be increasingly integrated within commercial automotive applications. Key advantages of SMA actuators include: potentially simplified construction, whereby the SMA can act as both sensor and actuator simultaneously; compatibility with Joule heating and convective ambient cooling; and, potential mass advantages over competing actuation technologies. These attributes potentially allow for the development of simpler, more reliable and cost effective actuation systems with significant reduction in mechanical complexity and size. SMA is readily available in commercial quantities and exhibits high wear resistance and durability, which make it an ideal candidate for application in automotive grade applications. Despite these identified advantages, SMA actuators are subject to a series of technical challenges associated with:  - Relatively small strain (displacement or stroke)  - Achievable frequency (actuation speed)  - Controllability (and stability)  - Positional accuracy  - Energy efficiency These technical challenges contribute to a relatively low success rate of commercial SMA actuator applications; and, provide motivation for this program to generate relevant research outcomes that enhance the commercialisation of SMA actuators. An extensive literature review of over 500 journal and patent documents was conducted to provide a clear roadmap for the commercial imperatives for SMA design. The formulated research methodology identifies milestones required for achieving the research objectives, which were addressed as research themes. Based on this literature review, the following research themes were identified:  - Design methods to resolve SMA actuator limitations  - Development of simple and practical numerical models for SMA actuator response  - Data for SMA linear actuator design Specific research contributions within these themes are presented within the thesis, with the objective of enhancing the commercial application of shape memory alloy (SMA) linear actuators, and include:  - A comprehensive analysis of SMAs: history, commercial applications, strength and limitations, design challenges and         opportunities.  - A novel investigation of transient heat transfer scenarios for cylindrical systems associated with their crossover and critical radii.  - Development of novel latent heat models for analytical and numerical applications, and proposal of readily applied activation and deactivation charts compatible with the requirements of SMA actuator designers.  - A novel investigation of the morphological effects of SMA-pulley systems (i.e. pulley diameter, SMA and lagging diameter) on structural and functional fatigue

    Advanced Applications of Rapid Prototyping Technology in Modern Engineering

    Get PDF
    Rapid prototyping (RP) technology has been widely known and appreciated due to its flexible and customized manufacturing capabilities. The widely studied RP techniques include stereolithography apparatus (SLA), selective laser sintering (SLS), three-dimensional printing (3DP), fused deposition modeling (FDM), 3D plotting, solid ground curing (SGC), multiphase jet solidification (MJS), laminated object manufacturing (LOM). Different techniques are associated with different materials and/or processing principles and thus are devoted to specific applications. RP technology has no longer been only for prototype building rather has been extended for real industrial manufacturing solutions. Today, the RP technology has contributed to almost all engineering areas that include mechanical, materials, industrial, aerospace, electrical and most recently biomedical engineering. This book aims to present the advanced development of RP technologies in various engineering areas as the solutions to the real world engineering problems

    A Few Days of A Robot's Life in the Human's World: Toward Incremental Individual Recognition

    Get PDF
    PhD thesisThis thesis presents an integrated framework and implementation for Mertz, an expressive robotic creature for exploring the task of face recognition through natural interaction in an incremental and unsupervised fashion. The goal of this thesis is to advance toward a framework which would allow robots to incrementally ``get to know'' a set of familiar individuals in a natural and extendable way. This thesis is motivated by the increasingly popular goal of integrating robots in the home. In order to be effective in human-centric tasks, the robots must be able to not only recognize each family member, but also to learn about the roles of various people in the household.In this thesis, we focus on two particular limitations of the current technology. Firstly, most of face recognition research concentrate on the supervised classification problem. Currently, one of the biggest problems in face recognition is how to generalize the system to be able to recognize new test data that vary from the training data. Thus, until this problem is solved completely, the existing supervised approaches may require multiple manual introduction and labelling sessions to include training data with enough variations. Secondly, there is typically a large gap between research prototypes and commercial products, largely due to lack of robustness and scalability to different environmental settings.In this thesis, we propose an unsupervised approach which wouldallow for a more adaptive system which can incrementally update thetraining set with more recent data or new individuals over time.Moreover, it gives the robots a more natural {\em socialrecognition} mechanism to learn not only to recognize each person'sappearance, but also to remember some relevant contextualinformation that the robot observed during previous interactionsessions. Therefore, this thesis focuses on integrating anunsupervised and incremental face recognition system within aphysical robot which interfaces directly with humans through naturalsocial interaction. The robot autonomously detects, tracks, andsegments face images during these interactions and automaticallygenerates a training set for its face recognition system. Moreover,in order to motivate robust solutions and address scalabilityissues, we chose to put the robot, Mertz, in unstructured publicenvironments to interact with naive passersby, instead of with onlythe researchers within the laboratory environment.While an unsupervised and incremental face recognition system is acrucial element toward our target goal, it is only a part of thestory. A face recognition system typically receives eitherpre-recorded face images or a streaming video from a static camera.As illustrated an ACLU review of a commercial face recognitioninstallation, a security application which interfaces with thelatter is already very challenging. In this case, our target goalis a robot that can recognize people in a home setting. Theinterface between robots and humans is even more dynamic. Both therobots and the humans move around.We present the robot implementation and its unsupervised incremental face recognition framework. We describe analgorithm for clustering local features extracted from a large set of automatically generated face data. We demonstrate the robot's capabilities and limitations in a series of experiments at a public lobby. In a final experiment, the robot interacted with a few hundred individuals in an eight day period and generated a training set of over a hundred thousand face images. We evaluate the clustering algorithm performance across a range of parameters on this automatically generated training data and also the Honda-UCSD video face database. Lastly, we present some recognition results using the self-labelled clusters

    Biomechatronics: Harmonizing Mechatronic Systems with Human Beings

    Get PDF
    This eBook provides a comprehensive treatise on modern biomechatronic systems centred around human applications. A particular emphasis is given to exoskeleton designs for assistance and training with advanced interfaces in human-machine interaction. Some of these designs are validated with experimental results which the reader will find very informative as building-blocks for designing such systems. This eBook will be ideally suited to those researching in biomechatronic area with bio-feedback applications or those who are involved in high-end research on manmachine interfaces. This may also serve as a textbook for biomechatronic design at post-graduate level

    Human Machine Interaction

    Get PDF
    In this book, the reader will find a set of papers divided into two sections. The first section presents different proposals focused on the human-machine interaction development process. The second section is devoted to different aspects of interaction, with a special emphasis on the physical interaction
    • …
    corecore