26 research outputs found

    Modelling and simulation of a multi-fingered robotic hand for grasping tasks

    Get PDF
    This paper develops the kinematic, dynamic and contact models of a three-fingered robotic hand (BarrettHand) in order to obtain a complete description of the system which is required for manipulation tasks. These models do not only take into account the mechanical coupling and the breakaway mechanism of the under-actuated robotic hand but they also obtain the force transmission from the hand to objects, which are represented as triangle meshes. The developed models have been implemented on a software simulator based on the Easy Java Simulations platform. Several experiments have been performed in order to verify the accuracy of the proposed models with regard to the real physic system.This work is supported by the Spanish Ministries of Education, Science and Innovation through the research project DPI2008-02647 ('Intelligent Manipulation through Haptic Perception and Visual Servoing by Using an Articulated Structure situated over a Robotic Manipulator') and the grant AP2005-1458

    Enhanced online programming for industrial robots

    Get PDF
    The use of robots and automation levels in the industrial sector is expected to grow, and is driven by the on-going need for lower costs and enhanced productivity. The manufacturing industry continues to seek ways of realizing enhanced production, and the programming of articulated production robots has been identified as a major area for improvement. However, realizing this automation level increase requires capable programming and control technologies. Many industries employ offline-programming which operates within a manually controlled and specific work environment. This is especially true within the high-volume automotive industry, particularly in high-speed assembly and component handling. For small-batch manufacturing and small to medium-sized enterprises, online programming continues to play an important role, but the complexity of programming remains a major obstacle for automation using industrial robots. Scenarios that rely on manual data input based on real world obstructions require that entire production systems cease for significant time periods while data is being manipulated, leading to financial losses. The application of simulation tools generate discrete portions of the total robot trajectories, while requiring manual inputs to link paths associated with different activities. Human input is also required to correct inaccuracies and errors resulting from unknowns and falsehoods in the environment. This study developed a new supported online robot programming approach, which is implemented as a robot control program. By applying online and offline programming in addition to appropriate manual robot control techniques, disadvantages such as manual pre-processing times and production downtimes have been either reduced or completely eliminated. The industrial requirements were evaluated considering modern manufacturing aspects. A cell-based Voronoi generation algorithm within a probabilistic world model has been introduced, together with a trajectory planner and an appropriate human machine interface. The robot programs so achieved are comparable to manually programmed robot programs and the results for a Mitsubishi RV-2AJ five-axis industrial robot are presented. Automated workspace analysis techniques and trajectory smoothing are used to accomplish this. The new robot control program considers the working production environment as a single and complete workspace. Non-productive time is required, but unlike previously reported approaches, this is achieved automatically and in a timely manner. As such, the actual cell-learning time is minimal

    Heterogeneous Self-Reconfiguring Robotics

    Get PDF
    Self-reconfiguring (SR) robots are modular systems that can autonomously change shape, or reconfigure, for increased versatility and adaptability in unknown environments. In this thesis, we investigate planning and control for systems of non-identical modules, known as heterogeneous SR robots. Although previous approaches rely on module homogeneity as a critical property, we show that the planning complexity of fundamental algorithmic problems in the heterogeneous case is equivalent to that of systems with identical modules. Primarily, we study the problem of how to plan shape changes while considering the placement of specific modules within the structure. We characterize this key challenge in terms of the amount of free space available to the robot and develop a series of decentralized reconfiguration planning algorithms that assume progressively more severe free space constraints and support reconfiguration among obstacles. In addition, we compose our basic planning techniques in different ways to address problems in the related task domains of positioning modules according to function, locomotion among obstacles, self-repair, and recognizing the achievement of distributed goal-states. We also describe the design of a novel simulation environment, implementation results using this simulator, and experimental results in hardware using a planar SR system called the Crystal Robot. These results encourage development of heterogeneous systems. Our algorithms enhance the versatility and adaptability of SR robots by enabling them to use functionally specialized components to match capability, in addition to shape, to the task at hand

    Actas do 10º Encontro Português de Computação Gráfica

    Get PDF
    Actas do 10º Encontro Portugês de Computação Gráfica, Lisboa, 1-3 de Outubro de 2001A investigação, o desenvolvimento e o ensino na área da Computação Gráfica constituem, em Portugal, uma realidade positiva e de largas tradições. O Encontro Português de Computação Gráfica (EPCG), realizado no âmbito das actividades do Grupo Português de Computação Gráfica (GPCG), tem permitido reunir regularmente, desde o 1º EPCG realizado também em Lisboa, mas no já longínquo mês de Julho de 1988, todos os que trabalham nesta área abrangente e com inúmeras aplicações. Pela primeira vez no historial destes Encontros, o 10º EPCG foi organizado em ligação estreita com as comunidades do Processamento de Imagem e da Visão por Computador, através da Associação Portuguesa de Reconhecimento de Padrões (APRP), salientando-se, assim, a acrescida colaboração, e a convergência, entre essas duas áreas e a Computação Gráfica. Este é o livro de actas deste 10º EPCG.INSATUniWebIcep PortugalMicrografAutodes

    COMPUTER-AIDED FIXTURE PLANNING: A REVIEW

    Get PDF
    Fixture planning is a complex activity restricted by the extreme diversity of workpieces and constraints of design geometry, part accessibility, working force, and component deformation. This paper reviews major approaches to computer-aided fixture planning (CAFP). Geometry methods, kinematical analysis, force analysis, deformation analysis, case-base reasoning, fixture assembly planning, feature-based methods, rule-based methods and optimization methods are surveyed. The CAFP systems are summarized as CAD-based systems and Web-based systems. Some promising research areas are identified in respect of fixture design, assembly planning and virtual fixture planning

    Virtual Reality Based Environment for Orthopedic Surgery (Veos)

    Get PDF
    The traditional way of teaching surgery involves students observing a �live� surgery and then gradually assisting experienced surgeons. The creation of a Virtual Reality environment for orthopedic surgery (VEOS) can be beneficial in improving the quality of training while decreasing the time needed for training. Developing such virtual environments for educational and training purposes can supplement existing approaches. In this research, the design and development of a virtual reality based environment for orthopedic surgery is described. The scope of the simulation environment is restricted to an orthopedic surgery process known as Less Invasive Stabilization System (LISS) surgery. The primary knowledge source for the LISS surgical process was Miguel A. Pirela-Cruz (Head of Orthopedic Surgery and Rehabilitation, Texas Tech University Health Sciences Center (TTHSC)). The VEOS was designed and developed on a PC based platform. The developed VEOS was validated through interactions with surgical residents at TTHSC. Feedback from residents and our collaborator Miguel A. Pirela-Cruz was used to make necessary modifications to the surgical environment.Industrial Engineering & Managemen

    Design and remote control of a Gantry mechanism for the SCARA robot

    Get PDF
    Remote experimentation and control have led researchers to develop new technologies as well as implement existing techniques. The multidisciplinary nature of research in electromechanical systems has led to the synergy of mechanical engineering, electrical engineering and computer science. This work describes the design of a model of a Gantry Mechanism, which maneuvers a web-cam. The user controls virtually the position of end-effecter of the Gantry Mechanism using a Graphical User Interface. The GUI is accessed over the Internet. In order to reduce the unbalanced vibrations of the Gantry Mechanism, we investigate the development of an algorithm of input shaping. A model of the Gantry Mechanism is built, and it is controlled over the Internet to view experimentation of the SCARA Robot. The system performance is studied by comparing the inputs such as distances and angles with outputs, and methods to improve the performance are suggested

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion
    corecore