1,674 research outputs found

    Learning Deep NBNN Representations for Robust Place Categorization

    Full text link
    This paper presents an approach for semantic place categorization using data obtained from RGB cameras. Previous studies on visual place recognition and classification have shown that, by considering features derived from pre-trained Convolutional Neural Networks (CNNs) in combination with part-based classification models, high recognition accuracy can be achieved, even in presence of occlusions and severe viewpoint changes. Inspired by these works, we propose to exploit local deep representations, representing images as set of regions applying a Na\"{i}ve Bayes Nearest Neighbor (NBNN) model for image classification. As opposed to previous methods where CNNs are merely used as feature extractors, our approach seamlessly integrates the NBNN model into a fully-convolutional neural network. Experimental results show that the proposed algorithm outperforms previous methods based on pre-trained CNN models and that, when employed in challenging robot place recognition tasks, it is robust to occlusions, environmental and sensor changes

    Place recognition: An Overview of Vision Perspective

    Full text link
    Place recognition is one of the most fundamental topics in computer vision and robotics communities, where the task is to accurately and efficiently recognize the location of a given query image. Despite years of wisdom accumulated in this field, place recognition still remains an open problem due to the various ways in which the appearance of real-world places may differ. This paper presents an overview of the place recognition literature. Since condition invariant and viewpoint invariant features are essential factors to long-term robust visual place recognition system, We start with traditional image description methodology developed in the past, which exploit techniques from image retrieval field. Recently, the rapid advances of related fields such as object detection and image classification have inspired a new technique to improve visual place recognition system, i.e., convolutional neural networks (CNNs). Thus we then introduce recent progress of visual place recognition system based on CNNs to automatically learn better image representations for places. Eventually, we close with discussions and future work of place recognition.Comment: Applied Sciences (2018

    Don't Look Back: Robustifying Place Categorization for Viewpoint- and Condition-Invariant Place Recognition

    Full text link
    When a human drives a car along a road for the first time, they later recognize where they are on the return journey typically without needing to look in their rear-view mirror or turn around to look back, despite significant viewpoint and appearance change. Such navigation capabilities are typically attributed to our semantic visual understanding of the environment [1] beyond geometry to recognizing the types of places we are passing through such as "passing a shop on the left" or "moving through a forested area". Humans are in effect using place categorization [2] to perform specific place recognition even when the viewpoint is 180 degrees reversed. Recent advances in deep neural networks have enabled high-performance semantic understanding of visual places and scenes, opening up the possibility of emulating what humans do. In this work, we develop a novel methodology for using the semantics-aware higher-order layers of deep neural networks for recognizing specific places from within a reference database. To further improve the robustness to appearance change, we develop a descriptor normalization scheme that builds on the success of normalization schemes for pure appearance-based techniques such as SeqSLAM [3]. Using two different datasets - one road-based, one pedestrian-based, we evaluate the performance of the system in performing place recognition on reverse traversals of a route with a limited field of view camera and no turn-back-and-look behaviours, and compare to existing state-of-the-art techniques and vanilla off-the-shelf features. The results demonstrate significant improvements over the existing state of the art, especially for extreme perceptual challenges that involve both great viewpoint change and environmental appearance change. We also provide experimental analyses of the contributions of the various system components.Comment: 9 pages, 11 figures, ICRA 201
    • …
    corecore