8,742 research outputs found

    Implementation of a robotic flexible assembly system

    Get PDF
    As part of the Intelligent Task Automation program, a team developed enabling technologies for programmable, sensory controlled manipulation in unstructured environments. These technologies include 2-D/3-D vision sensing and understanding, force sensing and high speed force control, 2.5-D vision alignment and control, and multiple processor architectures. The subsequent design of a flexible, programmable, sensor controlled robotic assembly system for small electromechanical devices is described using these technologies and ongoing implementation and integration efforts. Using vision, the system picks parts dumped randomly in a tray. Using vision and force control, it performs high speed part mating, in-process monitoring/verification of expected results and autonomous recovery from some errors. It is programmed off line with semiautomatic action planning

    Spartan Daily, September 15, 1981

    Get PDF
    Volume 77, Issue 10https://scholarworks.sjsu.edu/spartandaily/6785/thumbnail.jp

    Development of a biological signal-based evaluator for robot-assisted upper-limb rehabilitation: a pilot study

    Get PDF
    Bio-signal based assessment for upper-limb functions is an attractive technology for rehabilitation. In this work, an upper-limb function evaluator is developed based on biological signals, which could be used for selecting different robotic training protocols. Interaction force (IF) and participation level (PL, processed surface electromyography (sEMG) signals) are used as the key bio-signal inputs for the evaluator. Accordingly, a robot-based standardized performance testing (SPT) is developed to measure these key bio-signal data. Moreover, fuzzy logic is used to regulate biological signals, and a rules-based selector is then developed to select different training protocols. To the authors’ knowledge, studies focused on biological signal-based evaluator for selecting robotic training protocols, especially for robot-based bilateral rehabilitation, has not yet been reported in literature. The implementation of SPT and fuzzy logic to measure and process key bio-signal data with a rehabilitation robot system is the first of its kind. Five healthy participants were then recruited to test the performance of the SPT, fuzzy logic and evaluator in three different conditions (tasks). The results show: (1) the developed SPT has an ability to measure precise bio-signal data from participants; (2) the utilized fuzzy logic has an ability to process the measured data with the accuracy of 86.7% and 100% for the IF and PL respectively; and (3) the proposed evaluator has an ability to distinguish the intensity of biological signals and thus to select different robotic training protocols. The results from the proposed evaluator, and biological signals measured from healthy people could also be used to standardize the criteria to assess the results of stroke patients later
    corecore