1,520 research outputs found

    PHALANX: Expendable Projectile Sensor Networks for Planetary Exploration

    Get PDF
    Technologies enabling long-term, wide-ranging measurement in hard-to-reach areas are a critical need for planetary science inquiry. Phenomena of interest include flows or variations in volatiles, gas composition or concentration, particulate density, or even simply temperature. Improved measurement of these processes enables understanding of exotic geologies and distributions or correlating indicators of trapped water or biological activity. However, such data is often needed in unsafe areas such as caves, lava tubes, or steep ravines not easily reached by current spacecraft and planetary robots. To address this capability gap, we have developed miniaturized, expendable sensors which can be ballistically lobbed from a robotic rover or static lander - or even dropped during a flyover. These projectiles can perform sensing during flight and after anchoring to terrain features. By augmenting exploration systems with these sensors, we can extend situational awareness, perform long-duration monitoring, and reduce utilization of primary mobility resources, all of which are crucial in surface missions. We call the integrated payload that includes a cold gas launcher, smart projectiles, planning software, network discovery, and science sensing: PHALANX. In this paper, we introduce the mission architecture for PHALANX and describe an exploration concept that pairs projectile sensors with a rover mothership. Science use cases explored include reconnaissance using ballistic cameras, volatiles detection, and building timelapse maps of temperature and illumination conditions. Strategies to autonomously coordinate constellations of deployed sensors to self-discover and localize with peer ranging (i.e. a local GPS) are summarized, thus providing communications infrastructure beyond-line-of-sight (BLOS) of the rover. Capabilities were demonstrated through both simulation and physical testing with a terrestrial prototype. The approach to developing a terrestrial prototype is discussed, including design of the launching mechanism, projectile optimization, micro-electronics fabrication, and sensor selection. Results from early testing and characterization of commercial-off-the-shelf (COTS) components are reported. Nodes were subjected to successful burn-in tests over 48 hours at full logging duty cycle. Integrated field tests were conducted in the Roverscape, a half-acre planetary analog environment at NASA Ames, where we tested up to 10 sensor nodes simultaneously coordinating with an exploration rover. Ranging accuracy has been demonstrated to be within +/-10cm over 20m using commodity radios when compared to high-resolution laser scanner ground truthing. Evolution of the design, including progressive miniaturization of the electronics and iterated modifications of the enclosure housing for streamlining and optimized radio performance are described. Finally, lessons learned to date, gaps toward eventual flight mission implementation, and continuing future development plans are discussed

    Indoor Localization Techniques Based on Wireless Sensor Networks

    Get PDF

    SOFTWARE AND HARDWARE DESIGN OF A MINIATURIZED MOBILE AUTONOMOUS ROBOT, OPERATING IN A WIRELESS SENSOR NETWORK

    Get PDF
    Nowadays wireless nodes are becoming more and more popular in the field of localization. Thanks to the high research effort in this area, wireless sensors become more and more sophisticated. From year to year the accuracy in terms of distance estimation increases. In comparison to other localization devices like a Local Positioning System (LPS) or Global Positioning System (GPS), the wireless nodes are considered as a cheap alternative. The Finnish defence department, police and fire department support current research activities within this area, in the hope that they will get beneficial applications. The target of this Master’s Thesis “Software and Hardware Design of a Miniaturized Mobile Autonomous Robot, Operating in a Wireless Sensor Network” was the construction of miniaturized autonomous robot acting within a Wireless Sensor Network (WSN). The robot consists of an Embedded Linux PC, a wireless node and a mobile platform that are connected with each other. In this Master’s Thesis we describe the software and hardware tasks that were necessary for the interaction between the three mentioned components. We also discuss the software implementation for the communication between the wireless nodes and the results of the distance measurements.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Obstacle avoidance routing scheme through optimal sink movement for home monitoring and mobile robotic consumer devices

    Get PDF
    In recent years, ZigBee has been proven to be an excellent solution to create scalable and flexible home automation networks. In a home automation network, consumer devices typically collect data from a home monitoring environment and then transmit the data to an end user through multi-hop communication without the need for any human intervention. However, due to the presence of typical obstacles in a home environment, error-free reception may not be possible, particularly for power constrained devices. A mobile sink based data transmission scheme can be one solution but obstacles create significant complexities for the sink movement path determination process. Therefore, an obstacle avoidance data routing scheme is of vital importance to the design of an efficient home automation system. This paper presents a mobile sink based obstacle avoidance routing scheme for a home monitoring system. The mobile sink collects data by traversing through the obstacle avoidance path. Through ZigBee based hardware implementation and verification, the proposed scheme successfully transmits data through the obstacle avoidance path to improve network performance in terms of life span, energy consumption and reliability. The application of this work can be applied to a wide range of intelligent pervasive consumer products and services including robotic vacuum cleaners and personal security robots1

    Precise Localization and Formation Control of Swarm Robots via Wireless Sensor Networks

    Get PDF
    Precise localization and formation control are one of the key technologies to achieve coordination and control of swarm robots, which is also currently a bottleneck for practical applications of swarm robotic systems. Aiming at overcoming the limited individual perception and the difficulty of achieving precise localization and formation, a localization approach combining dead reckoning (DR) with wireless sensor network- (WSN-) based methods is proposed in this paper. Two kinds of WSN localization technologies are adopted in this paper, that is, ZigBee-based RSSI (received signal strength indication) global localization and electronic tag floors for calibration of local positioning. First, the DR localization information is combined with the ZigBee-based RSSI position information using the Kalman filter method to achieve precise global localization and maintain the robot formation. Then the electronic tag floors provide the robots with their precise coordinates in some local areas and enable the robot swarm to calibrate its formation by reducing the accumulated position errors. Hence, the overall performance of localization and formation control of the swarm robotic system is improved. Both of the simulation results and the experimental results on a real schematic system are given to demonstrate the success of the proposed approach

    On the design, development and experimentation of the ASTRO assistive robot integrated in smart environments

    Get PDF
    This paper presents the full experience of designing, developing and testing ASTROMOBILE, a system composed of an enhanced robotic platform integrated in an Ambient Intelligent (AmI) infrastructure that was conceived to provide favourable independent living, improved quality of life and efficiency of care for senior citizens. The design and implementation of ASTRO robot was sustained by a multidisciplinary team in which technology developers, designers and end-user representatives collaborated using a user-centred design approach. The key point of this work is to demonstrate the general feasibility and scientific/technical effectiveness of a mobile robotic platform integrated in a smart environment and conceived to provide useful services to humans and in particular to elderly people in domestic environments. The main aspects faced in this paper are related to the design of the ASTRO’s appearance and functionalities by means of a substantial analysis of users’ requirements, the improvement of the ASTRO’s behaviour by means of a smart sensor network able to share information with the robot (Ubiquitous Robotics) and the development of advanced human robot interfaces based on natural language
    • …
    corecore