267 research outputs found

    Bayesian perception of touch for control of robot emotion

    Get PDF
    In this paper, we present a Bayesian approach for perception of touch and control of robot emotion. Touch is an important sensing modality for the development of social robots, and it is used in this work as stimulus through a human-robot interaction. A Bayesian framework is proposed for perception of various types of touch. This method together with a sequential analysis approach allow the robot to accumulate evidence from the interaction with humans to achieve accurate touch perception for adaptable control of robot emotions. Facial expressions are used to represent the emotions of the iCub humanoid. Emotions in the robotic platform, based on facial expressions, are handled by a control architecture that works with the output from the touch perception process. We validate the accuracy of our system with simulated and real robot touch experiments. Results from this work show that our method is suitable and accurate for perception of touch to control robot emotions, which is essential for the development of sociable robots

    Sensorimotor representation learning for an "active self" in robots: A model survey

    Get PDF
    Safe human-robot interactions require robots to be able to learn how to behave appropriately in \sout{humans' world} \rev{spaces populated by people} and thus to cope with the challenges posed by our dynamic and unstructured environment, rather than being provided a rigid set of rules for operations. In humans, these capabilities are thought to be related to our ability to perceive our body in space, sensing the location of our limbs during movement, being aware of other objects and agents, and controlling our body parts to interact with them intentionally. Toward the next generation of robots with bio-inspired capacities, in this paper, we first review the developmental processes of underlying mechanisms of these abilities: The sensory representations of body schema, peripersonal space, and the active self in humans. Second, we provide a survey of robotics models of these sensory representations and robotics models of the self; and we compare these models with the human counterparts. Finally, we analyse what is missing from these robotics models and propose a theoretical computational framework, which aims to allow the emergence of the sense of self in artificial agents by developing sensory representations through self-exploration

    Sensorimotor Representation Learning for an “Active Self” in Robots: A Model Survey

    Get PDF
    Safe human-robot interactions require robots to be able to learn how to behave appropriately in spaces populated by people and thus to cope with the challenges posed by our dynamic and unstructured environment, rather than being provided a rigid set of rules for operations. In humans, these capabilities are thought to be related to our ability to perceive our body in space, sensing the location of our limbs during movement, being aware of other objects and agents, and controlling our body parts to interact with them intentionally. Toward the next generation of robots with bio-inspired capacities, in this paper, we first review the developmental processes of underlying mechanisms of these abilities: The sensory representations of body schema, peripersonal space, and the active self in humans. Second, we provide a survey of robotics models of these sensory representations and robotics models of the self; and we compare these models with the human counterparts. Finally, we analyze what is missing from these robotics models and propose a theoretical computational framework, which aims to allow the emergence of the sense of self in artificial agents by developing sensory representations through self-exploration.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Projekt DEALPeer Reviewe

    Coaching Imagery to Athletes with Aphantasia

    Get PDF
    We administered the Plymouth Sensory Imagery Questionnaire (Psi-Q) which tests multi-sensory imagery, to athletes (n=329) from 9 different sports to locate poor/aphantasic (baseline scores <4.2/10) imagers with the aim to subsequently enhance imagery ability. The low imagery sample (n=27) were randomly split into two groups who received the intervention: Functional Imagery Training (FIT), either immediately, or delayed by one month at which point the delayed group were tested again on the Psi-Q. All participants were tested after FIT delivery and six months post intervention. The delayed group showed no significant change between baseline and the start of FIT delivery but both groups imagery score improved significantly (p=0.001) after the intervention which was maintained six months post intervention. This indicates that imagery can be trained, with those who identify as having aphantasia (although one participant did not improve on visual scores), and improvements maintained in poor imagers. Follow up interviews (n=22) on sporting application revealed that the majority now use imagery daily on process goals. Recommendations are given for ways to assess and train imagery in an applied sport setting

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task
    • …
    corecore