36,602 research outputs found

    Reducing the Barrier to Entry of Complex Robotic Software: a MoveIt! Case Study

    Full text link
    Developing robot agnostic software frameworks involves synthesizing the disparate fields of robotic theory and software engineering while simultaneously accounting for a large variability in hardware designs and control paradigms. As the capabilities of robotic software frameworks increase, the setup difficulty and learning curve for new users also increase. If the entry barriers for configuring and using the software on robots is too high, even the most powerful of frameworks are useless. A growing need exists in robotic software engineering to aid users in getting started with, and customizing, the software framework as necessary for particular robotic applications. In this paper a case study is presented for the best practices found for lowering the barrier of entry in the MoveIt! framework, an open-source tool for mobile manipulation in ROS, that allows users to 1) quickly get basic motion planning functionality with minimal initial setup, 2) automate its configuration and optimization, and 3) easily customize its components. A graphical interface that assists the user in configuring MoveIt! is the cornerstone of our approach, coupled with the use of an existing standardized robot model for input, automatically generated robot-specific configuration files, and a plugin-based architecture for extensibility. These best practices are summarized into a set of barrier to entry design principles applicable to other robotic software. The approaches for lowering the entry barrier are evaluated by usage statistics, a user survey, and compared against our design objectives for their effectiveness to users

    Design Research on Robotic Products for School Environments

    Get PDF
    Advancements in robotic research have led to the design of a number of robotic products that can interact with people. In this research, a school environment was selected for a practical test of robotic products. For this, the robot “Tiro” was built, with the aim of supporting the learning activities of children. The possibility of applying robotic products was then tested through example lessons using Tiro. To do this, the robot design process and user-centred HRI evaluation framework were studied, and observations of robotic products were made via a field study on the basis of these understandings. Three different field studies were conducted, and interactions between children and robotic products were investigated. As a result, it was possible to understand how emotional interaction and verbal interaction affect the development of social relationships. Early results regarding this and coding schemes for video protocol analysis were gained. In this preliminary study, the findings are summarized and several design implications from insight grouping are suggested. These will help robot designers grasp how various factors of robotic products may be adopted in the everyday lives of people. Keywords: Robotic Products Design, HRI Evaluation, User-Centered HRI.</p

    Towards a universal end effector : the design and development of production technology's intelligent robot hand : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Engineering and Automation at Massey University

    Get PDF
    Research into robot hands for industrial use began in the early 1980s and there are now many examples of robot hands in existence. The reason for research into robot hands is that standard robot end effectors have to be designed for each application and are therefore costly. A universal end effector is needed that will be able to perform any parts handling operation or use other tools for other industrial operations. Existing robot hand research would therefore benefit from new concepts, designs and control systems. The Department of Production Technology is developing an intelligent robot hand of a novel configuration, with the ultimate aim of producing a universal end effector. The concept of PTIRH (Production Technology's Intelligent Robot Hand) is that it is a multi-fingered manipulator with a configuration of two thumbs and two fingers. Research by the author for this thesis concentrated on five major areas. First, the background research into the state of the art in robot hand research. Second, the initiation, development and analysis of the novel configuration concept of PTIRH. Third, specification, testing and analysis of air muscle actuation, including design, development and testing of a servo pneumatic control valve for the air muscles. Fourth, choice of sensors for the robot hand, including testing and analysis of two custom made air pressure sensors. Fifth, definition, design, construction, development, testing and analysis of the mechanical structure for an early prototype of PTIRH. Development of an intelligent controller for PTIRH was outside the scope of the author's research. The results of the analysis on the air muscles showed that they could be a suitable direct drive actuator for an intelligent robotic hand. The force, pressure and position sensor results indicate that the sensors could form the basis of the feedback loop for an intelligent controller. The configuration of PTIRH enables it to grasp objects with little reliance on friction. This was demonstrated with an early prototype of the robot hand, which had one finger with actuation and three other static digits, by successfully manually arranging the digits into stable grasps of various objects

    Debunking (the) Retribution (Gap)

    Get PDF
    Robotization is an increasingly pervasive feature of our lives. Robots with high degrees of autonomy may cause harm, yet in sufciently complex systems neither the robots nor the human developers may be candidates for moral blame. John Danaher has recently argued that this may lead to a retribution gap, where the human desire for retribution faces a lack of appropriate subjects for retributive blame. The potential social and moral implications of a retribution gap are considerable. I argue that the retributive intuitions that feed into retribution gaps are best understood as deontological intuitions. I apply a debunking argument for deontological intuitions in order to show that retributive intuitions cannot be used to justify retributive punishment in cases of robot harm without clear candidates for blame. The fundamental moral question thus becomes what we ought to do with these retributive intuitions, given that they do not justify retribution. I draw a parallel from recent work on implicit biases to make a case for taking moral responsibility for retributive intuitions. In the same way that we can exert some form of control over our unwanted implicit biases, we can and should do so for unjustifed retributive intuitions in cases of robot harm

    Building better Sex Robots: Lessons from Feminist Pornography

    Get PDF
    How should we react to the development of sexbot technology? Taking their cue from anti-porn feminism, several academic critics lament the development of sexbot technology, arguing that it objectifies and subordinates women, is likely to promote misogynistic attitudes toward sex, and may need to be banned or restricted. In this chapter I argue for an alternative response. Taking my cue from the sex positive ‘feminist porn’ movement, I argue that the best response to the development of ‘bad’ sexbots is to make better ones. This will require changes to the content, process and context of sexbot development. Doing so will acknowledge the valuable role that technology can play in human sexuality, and allow us to challenge gendered norms and assumptions about male and female sexual desire. This will not be a panacea to the social problems that could arise from sexbot development, but it offers a more realistic and hopeful vision for the future of this technology in a pluralistic and progressive society

    Tactile Interactions with a Humanoid Robot : Novel Play Scenario Implementations with Children with Autism

    Get PDF
    Acknowledgments: This work has been partially supported by the European Commission under contract number FP7-231500-ROBOSKIN. Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.The work presented in this paper was part of our investigation in the ROBOSKIN project. The project has developed new robot capabilities based on the tactile feedback provided by novel robotic skin, with the aim to provide cognitive mechanisms to improve human-robot interaction capabilities. This article presents two novel tactile play scenarios developed for robot-assisted play for children with autism. The play scenarios were developed against specific educational and therapeutic objectives that were discussed with teachers and therapists. These objectives were classified with reference to the ICF-CY, the International Classification of Functioning – version for Children and Youth. The article presents a detailed description of the play scenarios, and case study examples of their implementation in HRI studies with children with autism and the humanoid robot KASPAR.Peer reviewedFinal Published versio

    Analysis and Observations from the First Amazon Picking Challenge

    Full text link
    This paper presents a overview of the inaugural Amazon Picking Challenge along with a summary of a survey conducted among the 26 participating teams. The challenge goal was to design an autonomous robot to pick items from a warehouse shelf. This task is currently performed by human workers, and there is hope that robots can someday help increase efficiency and throughput while lowering cost. We report on a 28-question survey posed to the teams to learn about each team's background, mechanism design, perception apparatus, planning and control approach. We identify trends in this data, correlate it with each team's success in the competition, and discuss observations and lessons learned based on survey results and the authors' personal experiences during the challenge

    Building an Argument for the Use of Science Fiction in HCI Education

    Full text link
    Science fiction literature, comics, cartoons and, in particular, audio-visual materials, such as science fiction movies and shows, can be a valuable addition in Human-computer interaction (HCI) Education. In this paper, we present an overview of research relative to future directions in HCI Education, distinct crossings of science fiction in HCI and Computer Science teaching and the Framework for 21st Century Learning. Next, we provide examples where science fiction can add to the future of HCI Education. In particular, we argue herein first that science fiction, as tangible and intangible cultural artifact, can serve as a trigger for creativity and innovation and thus, support us in exploring the design space. Second, science fiction, as a means to analyze yet-to-come HCI technologies, can assist us in developing an open-minded and reflective dialogue about technological futures, thus creating a singular base for critical thinking and problem solving. Provided that one is cognizant of its potential and limitations, we reason that science fiction can be a meaningful extension of selected aspects of HCI curricula and research.Comment: 6 pages, 1 table, IHSI 2019 accepted submissio
    • 

    corecore