133,920 research outputs found

    Decentralized Connectivity-Preserving Deployment of Large-Scale Robot Swarms

    Full text link
    We present a decentralized and scalable approach for deployment of a robot swarm. Our approach tackles scenarios in which the swarm must reach multiple spatially distributed targets, and enforce the constraint that the robot network cannot be split. The basic idea behind our work is to construct a logical tree topology over the physical network formed by the robots. The logical tree acts as a backbone used by robots to enforce connectivity constraints. We study and compare two algorithms to form the logical tree: outwards and inwards. These algorithms differ in the order in which the robots join the tree: the outwards algorithm starts at the tree root and grows towards the targets, while the inwards algorithm proceeds in the opposite manner. Both algorithms perform periodic reconfiguration, to prevent suboptimal topologies from halting the growth of the tree. Our contributions are (i) The formulation of the two algorithms; (ii) A comparison of the algorithms in extensive physics-based simulations; (iii) A validation of our findings through real-robot experiments.Comment: 8 pages, 8 figures, submitted to IROS 201

    Quantum Robot: Structure, Algorithms and Applications

    Full text link
    A kind of brand-new robot, quantum robot, is proposed through fusing quantum theory with robot technology. Quantum robot is essentially a complex quantum system and it is generally composed of three fundamental parts: MQCU (multi quantum computing units), quantum controller/actuator, and information acquisition units. Corresponding to the system structure, several learning control algorithms including quantum searching algorithm and quantum reinforcement learning are presented for quantum robot. The theoretic results show that quantum robot can reduce the complexity of O(N^2) in traditional robot to O(N^(3/2)) using quantum searching algorithm, and the simulation results demonstrate that quantum robot is also superior to traditional robot in efficient learning by novel quantum reinforcement learning algorithm. Considering the advantages of quantum robot, its some potential important applications are also analyzed and prospected.Comment: 19 pages, 4 figures, 2 table

    Vision-based reinforcement learning using approximate policy iteration

    Get PDF
    A major issue for reinforcement learning (RL) applied to robotics is the time required to learn a new skill. While RL has been used to learn mobile robot control in many simulated domains, applications involving learning on real robots are still relatively rare. In this paper, the Least-Squares Policy Iteration (LSPI) reinforcement learning algorithm and a new model-based algorithm Least-Squares Policy Iteration with Prioritized Sweeping (LSPI+), are implemented on a mobile robot to acquire new skills quickly and efficiently. LSPI+ combines the benefits of LSPI and prioritized sweeping, which uses all previous experience to focus the computational effort on the most “interesting” or dynamic parts of the state space. The proposed algorithms are tested on a household vacuum cleaner robot for learning a docking task using vision as the only sensor modality. In experiments these algorithms are compared to other model-based and model-free RL algorithms. The results show that the number of trials required to learn the docking task is significantly reduced using LSPI compared to the other RL algorithms investigated, and that LSPI+ further improves on the performance of LSPI

    The kinematics of hyper-redundant robot locomotion

    Get PDF
    This paper considers the kinematics of hyper-redundant (or “serpentine”) robot locomotion over uneven solid terrain, and presents algorithms to implement a variety of “gaits”. The analysis and algorithms are based on a continuous backbone curve model which captures the robot's macroscopic geometry. Two classes of gaits, based on stationary waves and traveling waves of mechanism deformation, are introduced for hyper-redundant robots of both constant and variable length. We also illustrate how the locomotion algorithms can be used to plan the manipulation of objects which are grasped in a tentacle-like manner. Several of these gaits and the manipulation algorithm have been implemented on a 30 degree-of-freedom hyper-redundant robot. Experimental results are presented to demonstrate and validate these concepts and our modeling assumptions
    corecore