927 research outputs found

    A Survey on Socially Aware Robot Navigation: Taxonomy and Future Challenges

    Get PDF
    Socially aware robot navigation is gaining popularity with the increase in delivery and assistive robots. The research is further fueled by a need for socially aware navigation skills in autonomous vehicles to move safely and appropriately in spaces shared with humans. Although most of these are ground robots, drones are also entering the field. In this paper, we present a literature survey of the works on socially aware robot navigation in the past 10 years. We propose four different faceted taxonomies to navigate the literature and examine the field from four different perspectives. Through the taxonomic review, we discuss the current research directions and the extending scope of applications in various domains. Further, we put forward a list of current research opportunities and present a discussion on possible future challenges that are likely to emerge in the field

    Robot at factory 4.0: an auto-referee proposal based on artificial vision

    Get PDF
    The robotization and automation of tasks are relevant processes and of great relevance to be considered nowadays. This work aims to turn the manual action of assigning the score for the robotic competition Robot at Factory 4.0 by an automatic referee. Specifically, the aim is to represent the real space in a set of computational information using computer vision, localization and mapping techniques. One of the crucial processes to achieve this goal involved the adaptive calibration of the parameters of a digital camera through visual references and tracking of objects, which resulted in a fully functional, robust and dynamic system that is capable of mapping the competition’s objects accurately and correctly performing the referee’s tasks.This work is financed by National Funds through the Portuguese funding agency, FCT - Funda¸c˜ao para a Ciˆencia e a Tecnologia, within projects LA/P/0063/2020 and POCI-01-0247-FEDER-072638, co-funded by FEDER through COMPETE 2020. Authors acknowledge 5DPO RobotAtFactory team for making their time and robot available to conduct tests. The project that gave rise to these results received the support of a fellowship from “la Caixa” Foundation (ID 100010434). The fellowship code is LCF/BQ/DI20/11780028info:eu-repo/semantics/publishedVersio

    Pyrus Base: An Open Source Python Framework for the RoboCup 2D Soccer Simulation

    Full text link
    Soccer, also known as football in some parts of the world, involves two teams of eleven players whose objective is to score more goals than the opposing team. To simulate this game and attract scientists from all over the world to conduct research and participate in an annual computer-based soccer world cup, Soccer Simulation 2D (SS2D) was one of the leagues initiated in the RoboCup competition. In every SS2D game, two teams of 11 players and one coach connect to the RoboCup Soccer Simulation Server and compete against each other. Over the past few years, several C++ base codes have been employed to control agents' behavior and their communication with the server. Although C++ base codes have laid the foundation for the SS2D, developing them requires an advanced level of C++ programming. C++ language complexity is a limiting disadvantage of C++ base codes for all users, especially for beginners. To conquer the challenges of C++ base codes and provide a powerful baseline for developing machine learning concepts, we introduce Pyrus, the first Python base code for SS2D. Pyrus is developed to encourage researchers to efficiently develop their ideas and integrate machine learning algorithms into their teams. Pyrus base is open-source code, and it is publicly available under MIT License on GitHu

    Implementation of Wireless Communication System in R-SCUAD Humanoid Soccer Robot with Checksum Error Detection Method Based on UDP Protocol

    Get PDF
    This paper describes the communication system in the pattern of soccer games on the humanoid robot R-SCUAD. The communication system is an important part in the game of football. Along with the development of technology, robots are required to play soccer like humans, dribbling, kicking, running and coordinating well with their team. The communication system discussed in this paper is the process of sending and receiving data from one robot to another, assisted by a server. Beginning with robot 1 sending data to the server and forwarded to robot 2 or vice versa. The protocol used for this communication system is User Datagram Protocol (UDP) because UDP has several characteristics that support the occurrence of communication robots such as connection-less and unreliable. These two characteristics strongly support the communication system to be built. The checksum error detection method is a method used to detect errors in the R-SCUAD Robot communication system. The results show that the communication system built on the robot has been successfully implemented. From the test results it can be concluded that the success of the communication system is 98%

    A systematic literature review of decision-making and control systems for autonomous and social robots

    Get PDF
    In the last years, considerable research has been carried out to develop robots that can improve our quality of life during tedious and challenging tasks. In these contexts, robots operating without human supervision open many possibilities to assist people in their daily activities. When autonomous robots collaborate with humans, social skills are necessary for adequate communication and cooperation. Considering these facts, endowing autonomous and social robots with decision-making and control models is critical for appropriately fulfiling their initial goals. This manuscript presents a systematic review of the evolution of decision-making systems and control architectures for autonomous and social robots in the last three decades. These architectures have been incorporating new methods based on biologically inspired models and Machine Learning to enhance these systems’ possibilities to developed societies. The review explores the most novel advances in each application area, comparing their most essential features. Additionally, we describe the current challenges of software architecture devoted to action selection, an analysis not provided in similar reviews of behavioural models for autonomous and social robots. Finally, we present the future directions that these systems can take in the future.The research leading to these results has received funding from the projects: Robots Sociales para Estimulación Física, Cognitiva y Afectiva de Mayores (ROSES), RTI2018-096338-B-I00, funded by the Ministerio de Ciencia, Innovación y Universidades; Robots sociales para mitigar la soledad y el aislamiento en mayores (SOROLI), PID2021-123941OA-I00, funded by Agencia Estatal de Investigación (AEI), Spanish Ministerio de Ciencia e Innovación. This publication is part of the R&D&I project PLEC2021-007819 funded by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR

    Machine Learning Meets Advanced Robotic Manipulation

    Full text link
    Automated industries lead to high quality production, lower manufacturing cost and better utilization of human resources. Robotic manipulator arms have major role in the automation process. However, for complex manipulation tasks, hard coding efficient and safe trajectories is challenging and time consuming. Machine learning methods have the potential to learn such controllers based on expert demonstrations. Despite promising advances, better approaches must be developed to improve safety, reliability, and efficiency of ML methods in both training and deployment phases. This survey aims to review cutting edge technologies and recent trends on ML methods applied to real-world manipulation tasks. After reviewing the related background on ML, the rest of the paper is devoted to ML applications in different domains such as industry, healthcare, agriculture, space, military, and search and rescue. The paper is closed with important research directions for future works

    Robotic Monitoring of Habitats: the Natural Intelligence Approach

    Get PDF
    In this paper, we first discuss the challenges related to habitat monitoring and review possible robotic solutions. Then, we propose a framework to perform terrestrial habitat monitoring exploiting the mobility of legged robotic systems. The idea is to provide the robot with the Natural Intelligence introduced as the combination of the environment in which it moves, the intelligence embedded in the design of its body, and the algorithms composing its mind. This approach aims to solve the challenges of deploying robots in real natural environments, such as irregular and rough terrains, long-lasting operations, and unexpected collisions, with the final objective of assisting humans in assessing the habitat conservation status. Finally, we present examples of robotic monitoring of habitats in four different environments: forests, grasslands, dunes, and screes

    NICOL: A Neuro-inspired Collaborative Semi-humanoid Robot that Bridges Social Interaction and Reliable Manipulation

    Full text link
    Robotic platforms that can efficiently collaborate with humans in physical tasks constitute a major goal in robotics. However, many existing robotic platforms are either designed for social interaction or industrial object manipulation tasks. The design of collaborative robots seldom emphasizes both their social interaction and physical collaboration abilities. To bridge this gap, we present the novel semi-humanoid NICOL, the Neuro-Inspired COLlaborator. NICOL is a large, newly designed, scaled-up version of its well-evaluated predecessor, the Neuro-Inspired COmpanion (NICO). NICOL adopts NICO's head and facial expression display and extends its manipulation abilities in terms of precision, object size, and workspace size. Our contribution in this paper is twofold -- firstly, we introduce the design concept for NICOL, and secondly, we provide an evaluation of NICOL's manipulation abilities by presenting a novel extension for an end-to-end hybrid neuro-genetic visuomotor learning approach adapted to NICOL's more complex kinematics. We show that the approach outperforms the state-of-the-art Inverse Kinematics (IK) solvers KDL, TRACK-IK and BIO-IK. Overall, this article presents for the first time the humanoid robot NICOL, and contributes to the integration of social robotics and neural visuomotor learning for humanoid robots
    corecore