210 research outputs found

    A cloud-enabled small cell architecture in 5G networks for broadcast/multicast services

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The evolution of 5G suggests that communication networks become sufficiently flexible to handle a wide variety of network services from various domains. The virtualization of small cells as envisaged by 5G, allows enhanced mobile edge computing capabilities, thus enabling network service deployment and management near the end user. This paper presents a cloud-enabled small cell architecture for 5G networks developed within the 5G-ESSENCE project. This paper also presents the conformity of the proposed architecture to the evolving 5G radio resource management architecture. Furthermore, it examines the inclusion of an edge enabler to support a variety of virtual network functions in 5G networks. Next, the improvement of specific key performance indicators in a public safety use case is evaluated. Finally, the performance of a 5G enabled evolved multimedia broadcast multicast services service is evaluated.Peer ReviewedPostprint (author's final draft

    A Flexible Architecture for Broadcast Broadband Convergence in Beyond 5G

    Full text link
    There has been an exponential increase in the usage of multimedia services in mobile networks in recent years. To address this accelerating data demand, mobile networks are experiencing a subtle transformation in their architecture. One of the changes in this direction is the support of Multicast/Broadcast Service (MBS) in the Third Generation Partnership Project (3GPP) Fifth Generation (5G) network. The MBS has been introduced to enhance resource utilization and user experience in 3GPP 5G networks. However, there are certain limitations in the 3GPP 5G MBS architecture, such as the selection of the delivery method (unicast or broadcast) by the core network (may result in sub-optimal radio resource utilization) and no provision for converging non-3GPP broadcast technologies (like digital terrestrial television) with cellular (3GPP 5G) broadband. In this context, we propose a new architecture for broadcast broadband convergence in mobile networks. A novelty of the architecture is that it treats signalling exchange with User Equipment (UE) as data (service) which results in improved scalability of mobile networks. The proposed architecture can also be extended for the convergence of cellular broadband and non-3GPP broadcast networks with ease. The architecture supports enhanced flexibility in choosing a delivery method (3GPP 5G unicast, 3GPP 5G broadcast, or non-3GPP broadcast) for user data. We evaluate the performance of the proposed architecture using process algebra-based simulations, demonstrating a significant reduction in the number of signalling messages exchanged between the UE and the network for MBS session establishment as compared to the 3GPP 5G network.Comment: 6 pages, conference pape

    On the Performance of PDCCH in LTE and 5G New Radio

    Full text link
    5G New Radio (NR) Release 15 has been specified in June 2018. It introduces numerous changes and potential improvements for physical layer data transmissions, although only point-to-point (PTP) communications are considered. In order to use physical data channels such as the Physical Downlink Shared Channel (PDSCH), it is essential to guarantee a successful transmission of control information via the Physical Downlink Control Channel (PDCCH). Taking into account these two aspects, in this paper, we first analyze the PDCCH processing chain in NR PTP as well as in the state-of-the-art Long Term Evolution (LTE) point-to-multipoint (PTM) solution, i.e., evolved Multimedia Broadcast Multicast Service (eMBMS). Then, via link level simulations, we compare the performance of the two technologies, observing the Bit/Block Error Rate (BER/BLER) for various scenarios. The objective is to identify the performance gap brought by physical layer changes in NR PDCCH as well as provide insightful guidelines on the control channel configuration towards NR PTM scenarios.Comment: Globecomm 2018 workshop, 6 pages, 7 fig

    LTE Network Enhancement for Vehicular Safety Communication

    Get PDF

    A fast and reliable broadcast service for LTE-advanced exploiting multihop device-to-device transmissions

    Get PDF
    Several applications, from the Internet of Things for smart cities to those for vehicular networks, need fast and reliable proximity-based broadcast communications, i.e., the ability to reach all peers in a geographical neighborhood around the originator of a message, as well as ubiquitous connectivity. In this paper, we point out the inherent limitations of the LTE (Long-Term Evolution) cellular network, which make it difficult, if possible at all, to engineer such a service using traditional infrastructure-based communications. We argue, instead, that network-controlled device-to-device (D2D) communications, relayed in a multihop fashion, can efficiently support this service. To substantiate the above claim, we design a proximity-based broadcast service which exploits multihop D2D. We discuss the relevant issues both at the UE (User Equipment), which has to run applications, and within the network (i.e., at the eNodeBs), where suitable resource allocation schemes have to be enforced. We evaluate the performance of a multihop D2D broadcasting using system-level simulations, and demonstrate that it is fast, reliable and economical from a resource consumption standpoint

    Network-driven handover in 5G

    Get PDF
    Currently, users’ expectations regarding technological performance are constantly increasing. An example of this is the growing consumption of multimedia content via the Internet. Multimedia applications with a variable number of users/requests have variable demand over time that may expose the limitation of the network channels. This may cause a problem of demand mobility generated by the service/application. Each generation of mobile networks has specific handover processes, which in the case of 4G can be controlled according to the applications requirements, with the possibility of multiconnectivity. This process was massified in 5G. The main contribution of this dissertation is the development and analysis of decision models for controlling the video streaming and user association to a BS in the network architecture. The scenario considered refers to a football stadium with multiple points of view – video streams – that each spectator can request to view on their cell phone or tablet. The developed simulator models the stadium scenario using a combination of services, which occur on the 5G network. Vertical handover generated by the network is used,aidedbynetworkslicing. Thenetworkslicingactsinthepartofthebandwidthdivision between the different antennas and allows the throughput of the different broadcast (FeMBMS)channelsto becontrolledbytheservice -theradionetworkcapacitylimitsthe throughput. The results obtained in a case of 80000 spectators who select different beams over time, considering8basestations(BS),showthatthequalityofexperienceishighonlywhenthe handover and the control of beam diffusion by BS are managed according to the application requirements. The network recovers from huge peaks by handling as many requests at once as possible. Instead of the user only getting the steam in a good quality or not getting it at all, the network performs a best-effort solution of downgrading the quality of multicasting in order to expend less resources with the same quantity of requests. The network state is taken into consideration. Although there are load peaks on the network, it is never congested.Atualmente, as expectativas dos utilizadores em relação à capacidade tecnológica não param de aumentar. Exemplo disso é o crescente consumo de conteúdo multimédia através da Internet. Aplicações multimédia com número variável de utilizadores e pedidos têm um fluxo de serviço variável ao longo do tempo. Esta variância pode expor a limitação de canais de rede, que consequentemente pode causar um problema de mobilidade gerado pelo serviço/aplicação. Cada geração de redes móveis possui processos de handover de utilizadores específicos, que no caso da geração 4G passou a ser controlado em função das aplicações, com a possibilidade de multiconectividade. Este processo foi massificado no 5G. A principal contribuição desta dissertação é o desenvolvimento e análise de modelos de decisão para controlar a difusão de vídeo e a associação de utilizadores à rede rádio na arquitetura da rede. O cenário considerado reflete um estádio de futebol com vários pontos de vista - diferentes feixes de vídeo - que cada espectador pode solicitar e visualizar no seu telemóvel ou tablet. O simulador desenvolvido modela o cenário do estádio usando uma combinação de serviços, que ocorrem na rede 5G. É usado handover vertical gerado pela rede auxiliado por network slicing que atua na parte da divisão da largura de banda entre as diferentes antenas e permite que a taxa de débito dos diferentes canais de difusão (FeMBMS) seja controlada pelo serviço - a capacidade da rede rádio limita a taxa de transferência. Os resultados obtidos no caso de 80000 espectadores que selecionam diferentes feixes ao longo do tempo, considerando 8 estações base (BS), mostram que a qualidade de experiência somente é elevada quando o handover e o controlo da difusão de feixes pelas BS são geridos de acordo com os requisitos da aplicação. A rede recupera a estabilidade após enormes picos de transferência gerindo os seus recursos. Em vez do utilizador ser prejudicado na totalidade quando a rede não tem recursos e ser privado de obter serviço, é utilizado um processo alternativo em que a rede diminui a qualidade de multicasting, gastando menos recursos com a mesma quantidade de pedidos. O estado da rede é sempre tido em consideração - embora hajam picos de carga na rede, esta nunca fica congestionada

    Proxy-based near real-time TV content transmission in mobility over 4G with MPEG-DASH transcoding on the cloud

    Full text link
    [EN] This paper presents and evaluates a system that provides TV and radio services in mobility using 4G communications. The system has mainly two blocks, one on the cloud and another on the mobile vehicle. On the cloud, a DVB (Digital Video Broadcasting) receiver obtains the TV/radio signal and prepares the contents to be sent through 4G. Specifically, contents are transcoded and packetized using the DASH (Dynamic Adaptive Streaming over HTTP) standard. Vehicles in mobility use their 4G connectivity to receive the flows transmitted by the cloud. The key element of the system is an on-board proxy that manages the received flows and offers them to the final users in the vehicle. The proxy contains a buffer that helps reduce the number of interruptions caused by hand over effects and lack of coverage. The paper presents a comparison between a live transmission using 4G connecting the clients directly with the cloud server and a near real-time transmission based on an on-board proxy. Results prove that the use of the proxy reduces the number of interruptions considerably and, thus, improves the Quality of Experience of users at the expense of slightly increasing the delay.This work is supported by the Centro para el Desarrollo Tecnologico Industrial (CDTI) from the Government of Spain under the project "Plataforma avanzada de conectividad en movilidad" (CDTI IDI-20150126) and the project "Desarrollo de nueva plataforma de entretenimiento multimedia para entornos nauticos" (CDTI TIC-20170102).Arce Vila, P.; De Fez Lava, I.; Belda Ortega, R.; Guerri Cebollada, JC.; Ferrairó, S. (2019). Proxy-based near real-time TV content transmission in mobility over 4G with MPEG-DASH transcoding on the cloud. Multimedia Tools and Applications. 78(18):26399-26425. https://doi.org/10.1007/s11042-019-07840-6S2639926425781

    Recent Advances in Cellular D2D Communications

    Get PDF
    Device-to-device (D2D) communications have attracted a great deal of attention from researchers in recent years. It is a promising technique for offloading local traffic from cellular base stations by allowing local devices, in physical proximity, to communicate directly with each other. Furthermore, through relaying, D2D is also a promising approach to enhancing service coverage at cell edges or in black spots. However, there are many challenges to realizing the full benefits of D2D. For one, minimizing the interference between legacy cellular and D2D users operating in underlay mode is still an active research issue. With the 5th generation (5G) communication systems expected to be the main data carrier for the Internet-of-Things (IoT) paradigm, the potential role of D2D and its scalability to support massive IoT devices and their machine-centric (as opposed to human-centric) communications need to be investigated. New challenges have also arisen from new enabling technologies for D2D communications, such as non-orthogonal multiple access (NOMA) and blockchain technologies, which call for new solutions to be proposed. This edited book presents a collection of ten chapters, including one review and nine original research works on addressing many of the aforementioned challenges and beyond
    corecore