39,927 research outputs found

    Road traffic sign detection and classification

    Get PDF
    A vision-based vehicle guidance system for road vehicles can have three main roles: (1) road detection; (2) obstacle detection; and (3) sign recognition. The first two have been studied for many years and with many good results, but traffic sign recognition is a less-studied field. Traffic signs provide drivers with very valuable information about the road, in order to make driving safer and easier. The authors think that traffic signs most play the same role for autonomous vehicles. They are designed to be easily recognized by human drivers mainly because their color and shapes are very different from natural environments. The algorithm described in this paper takes advantage of these features. It has two main parts. The first one, for the detection, uses color thresholding to segment the image and shape analysis to detect the signs. The second one, for the classification, uses a neural network. Some results from natural scenes are shown.Publicad

    Traffic sign detection and tracking using robust 3D analysis

    Get PDF
    In this paper we present an innovative technique to tackle the problem of automatic road sign detection and tracking using an on-board stereo camera. It involves a continuous 3D analysis of the road sign during the whole tracking process. Firstly, a color and appearance based model is applied to generate road sign candidates in both stereo images. A sparse disparity map between the left and right images is then created for each candidate by using contour-based and SURF-based matching in the far and short range, respectively. Once the map has been computed, the correspondences are back-projected to generate a cloud of 3D points, and the best-fit plane is computed through RANSAC, ensuring robustness to outliers. Temporal consistency is enforced by means of a Kalman filter, which exploits the intrinsic smoothness of the 3D camera motion in traffic environments. Additionally, the estimation of the plane allows to correct deformations due to perspective, thus easing further sign classification

    Investigation of traffic sign image classification for self driving car

    Get PDF
    Artificial Intelligence has had a good impact on all fields and is making our lives easier. With the growth of autonomous vehicles, the automotive industry is improving rapidly. Autonomous vehicles are a certain conclusion in the future, and they are intended to be both safe and convenient. One of the most critical issues for autonomous vehicles is traffic sign classification. Half occlusion, colour fade by surrounding barriers, variations in shadows, reflections on signboards during the day, and movement blurring different lighting and weather situations are some of the most typical issues that might occur when identifying and detecting traffic signs. In the classification and identification of road signs, the performance of a Convolutional Neural Network (CNN) has outperformed the same of humans. The purpose of this study is to boost the accuracy of this classification in order to minimize accidents and enhance the credibility of selfdriving vehicles. Otherwise, the ecology of traffic may be jeopardised. Using image processing and machine vision processing technologies, as well as the use of in-depth learning in target classification, the traffic sign recognition method based on CNN is studied. A traffic sign detection and classification method with high efficiency and high efficiency are proposed. The German Traffic Sign Recognition Benchmark (GTSRB) is employed to test the approach method, and the results reveal that it outperforms state-of-the-art approaches

    Unconstrained Road Sign Recognition

    Get PDF
    There are many types of road signs, each of which carries a different meaning and function: some signs regulate traffic, others indicate the state of the road or guide and warn drivers and pedestrians. Existent image-based road sign recognition systems work well under ideal conditions, but experience problems when the lighting conditions are poor or the signs are partially occluded. The aim of this research is to propose techniques to recognize road signs in a real outdoor environment, especially to deal with poor lighting and partially occluded road signs. To achieve this, hybrid segmentation and classification algorithms are proposed. In the first part of the thesis, we propose a hybrid dynamic threshold colour segmentation algorithm based on histogram analysis. A dynamic threshold is very important in road sign segmentation, since road sign colours may change throughout the day due to environmental conditions. In the second part, we propose a geometrical shape symmetry detection and reconstruction algorithm to detect and reconstruct the shape of the sign when it is partially occluded. This algorithm is robust to scale changes and rotations. The last part of this thesis deals with feature extraction and classification. We propose a hybrid feature vector based on histograms of oriented gradients, local binary patterns, and the scale-invariant feature transform. This vector is fed into a classifier that combines a Support Vector Machine (SVM) using a Random Forest and a hybrid SVM k-Nearest Neighbours (kNN) classifier. The overall method proposed in this thesis shows a high accuracy rate of 99.4% in ideal conditions, 98.6% in noisy and fading conditions, 98.4% in poor lighting conditions, and 92.5% for partially occluded road signs on the GRAMUAH traffic signs dataset

    Fast traffic sign recognition using color segmentation and deep convolutional networks

    Get PDF
    The use of Computer Vision techniques for the automatic recognition of road signs is fundamental for the development of intelli- gent vehicles and advanced driver assistance systems. In this paper, we describe a procedure based on color segmentation, Histogram of Ori- ented Gradients (HOG), and Convolutional Neural Networks (CNN) for detecting and classifying road signs. Detection is speeded up by a pre- processing step to reduce the search space, while classication is carried out by using a Deep Learning technique. A quantitative evaluation of the proposed approach has been conducted on the well-known German Traf- c Sign data set and on the novel Data set of Italian Trac Signs (DITS), which is publicly available and contains challenging sequences captured in adverse weather conditions and in an urban scenario at night-time. Experimental results demonstrate the eectiveness of the proposed ap- proach in terms of both classication accuracy and computational speed
    corecore