2,188 research outputs found

    A Deep Reinforcement Learning-Based Controller for Magnetorheological-Damped Vehicle Suspension

    Full text link
    This paper proposes a novel approach to controller design for MR-damped vehicle suspension system. This approach is predicated on the premise that the optimal control strategy can be learned through real-world or simulated experiments utilizing a reinforcement learning algorithm with continuous states/actions. The sensor data is fed into a Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, which generates the actuation voltage required for the MR damper. The resulting suspension space (displacement), sprung mass acceleration, and dynamic tire load are calculated using a quarter vehicle model incorporating the modified Bouc-Wen MR damper model. Deep RL's reward function is based on sprung mass acceleration. The proposed approach outperforms traditional suspension control strategies regarding ride comfort and stability, as demonstrated by multiple simulated experimentsComment: 19 pages , 9 figures , 5 table

    Response-based methods to measure road surface irregularity: a state-of-the-art review

    Get PDF
    "jats:sec" "jats:title"Purpose"/jats:title" "jats:p"With the development of smart technologies, Internet of Things and inexpensive onboard sensors, many response-based methods to evaluate road surface conditions have emerged in the recent decade. Various techniques and systems have been developed to measure road profiles and detect road anomalies for multiple purposes such as expedient maintenance of pavements and adaptive control of vehicle dynamics to improve ride comfort and ride handling. A holistic review of studies into modern response-based techniques for road pavement applications is found to be lacking. Herein, the focus of this article is threefold: to provide an overview of the state-of-the-art response-based methods, to highlight key differences between methods and thereby to propose key focus areas for future research."/jats:p" "/jats:sec" "jats:sec" "jats:title"Methods"/jats:title" "jats:p"Available articles regarding response-based methods to measure road surface condition were collected mainly from “Scopus” database and partially from “Google Scholar”. The search period is limited to the recent 15 years. Among the 130 reviewed documents, 37% are for road profile reconstruction, 39% for pothole detection and the remaining 24% for roughness index estimation."/jats:p" "/jats:sec" "jats:sec" "jats:title"Results"/jats:title" "jats:p"The results show that machine-learning techniques/data-driven methods have been used intensively with promising results but the disadvantages on data dependence have limited its application in some instances as compared to analytical/data processing methods. Recent algorithms to reconstruct/estimate road profiles are based mainly on passive suspension and quarter-vehicle-model, utilise fewer key parameters, being independent on speed variation and less computation for real-time/online applications. On the other hand, algorithms for pothole detection and road roughness index estimation are increasingly focusing on GPS accuracy, data aggregation and crowdsourcing platform for large-scale application. However, a novel and comprehensive system that is comparable to existing International Roughness Index and conventional Pavement Management System is still lacking."/jats:p" "/jats:sec Document type: Articl

    Road profile estimation for suspension system based on the minimum model error criterion combined with a Kalman filter

    Get PDF
    This paper presents a novel approach for improving the estimation accuracy of the road profile for a vehicle suspension system. To meet the requirements of road profile estimation for road management and reproduction of system excitation, previous studies can be divided into data-driven and model based approaches. These studies mainly focused on road profile estimation while seldom considering the uncertainty of parameters. However, uncertainty is unavoidable for various aspects of suspension system, e.g., varying sprung mass, damper and tire nonlinear performance. In this study, to improve the estimation accuracy for a varying sprung mass, a novel algorithm was derived based on the Minimum Model Error (MME) criterion and a Kalman Filter (KF). Since the MME criterion method utilizes the minimum value principle to solve the model error based on a model error function, the MME criterion can effectively deal with the estimation error. Then, the proposed algorithm was applied to a 2 degree-of-freedom (DOF) suspension system model under ISO Level-B, ISO Level-C and ISO Level-D road excitations. Simulation results and experimental data obtained using a quarter-vehicle test rig revealed that the proposed approach achieves higher road estimation accuracy compared to traditional KF methods

    Symmetry in Structural Health Monitoring

    Get PDF
    In this Special Issue on symmetry, we mainly discuss the application of symmetry in various structural health monitoring. For example, considering the health monitoring of a known structure, by obtaining the static or dynamic response of the structure, using different signal processing methods, including some advanced filtering methods, to remove the influence of environmental noise, and extract structural feature parameters to determine the safety of the structure. These damage diagnosis methods can also be effectively applied to various types of infrastructure and mechanical equipment. For this reason, the vibration control of various structures and the knowledge of random structure dynamics should be considered, which will promote the rapid development of the structural health monitoring. Among them, signal extraction and evaluation methods are also worthy of study. The improvement of signal acquisition instruments and acquisition methods improves the accuracy of data. A good evaluation method will help to correctly understand the performance with different types of infrastructure and mechanical equipment

    Road Friction Virtual Sensing:A Review of Estimation Techniques with Emphasis on Low Excitation Approaches

    Get PDF
    In this paper, a review on road friction virtual sensing approaches is provided. In particular, this work attempts to address whether the road grip potential can be estimated accurately under regular driving conditions in which the vehicle responses remain within low longitudinal and lateral excitation levels. This review covers in detail the most relevant effect-based estimation methods; these are methods in which the road friction characteristics are inferred from the tyre responses: tyre slip, tyre vibration, and tyre noise. Slip-based approaches (longitudinal dynamics, lateral dynamics, and tyre self-alignment moment) are covered in the first part of the review, while low frequency and high frequency vibration-based works are presented in the following sections. Finally, a brief summary containing the main advantages and drawbacks derived from each estimation method and the future envisaged research lines are presented in the last sections of the paper

    On Training Road Surface Classifiers by Data Augmentation

    Full text link
    [EN] It is demonstrated that data augmentation is a promising approach to reduce the size of the captured dataset required for training automatic road surface classifiers. The context is on-board systems for autonomous or semi-autonomous driving assistance: automatic power-assisted steering. Evidence is obtained by extensive experiments involving multiple captures from a 10-channel multisensor deployment: three channels from the accelerometer (acceleration in the X, Y, and Z axes); three microphone channels; two speed channels; and the torque and position of the handwheel. These captures were made under different settings: three worm-gear interface configurations; hands on or off the wheel; vehicle speed (constant speed of 10, 15,20, 30 km/h, or accelerating from 0 to 30 km/h); and road surface (smooth flat asphalt, stripes, or cobblestones). It has been demonstrated in the experiments that data augmentation allows a reduction by an approximate factor of 1.5 in the size of the captured training dataset.This research was funded by MCIN/AEI/10.13039/501100011033 and by the European Union, grant number TEC2017-84743-P.Salazar Afanador, A.; Rodríguez, A.; Vargas, N.; Vergara Domínguez, L. (2022). On Training Road Surface Classifiers by Data Augmentation. Applied Sciences. 12(7):1-11. https://doi.org/10.3390/app1207342311112

    Advances in Intelligent Vehicle Control

    Get PDF
    This book is a printed edition of the Special Issue Advances in Intelligent Vehicle Control that was published in the journal Sensors. It presents a collection of eleven papers that covers a range of topics, such as the development of intelligent control algorithms for active safety systems, smart sensors, and intelligent and efficient driving. The contributions presented in these papers can serve as useful tools for researchers who are interested in new vehicle technology and in the improvement of vehicle control systems

    Computational intelligent impact force modeling and monitoring in HISLO conditions for maximizing surface mining efficiency, safety, and health

    Get PDF
    Shovel-truck systems are the most widely employed excavation and material handling systems for surface mining operations. During this process, a high-impact shovel loading operation (HISLO) produces large forces that cause extreme whole body vibrations (WBV) that can severely affect the safety and health of haul truck operators. Previously developed solutions have failed to produce satisfactory results as the vibrations at the truck operator seat still exceed the “Extremely Uncomfortable Limits”. This study was a novel effort in developing deep learning-based solution to the HISLO problem. This research study developed a rigorous mathematical model and a 3D virtual simulation model to capture the dynamic impact force for a multi-pass shovel loading operation. The research further involved the application of artificial intelligence and machine learning for implementing the impact force detection in real time. Experimental results showed the impact force magnitudes of 571 kN and 422 kN, for the first and second shovel pass, respectively, through an accurate representation of HISLO with continuous flow modelling using FEA-DEM coupled methodology. The novel ‘DeepImpact’ model, showed an exceptional performance, giving an R2, RMSE, and MAE values of 0.9948, 10.750, and 6.33, respectively, during the model validation. This research was a pioneering effort for advancing knowledge and frontiers in addressing the WBV challenges in deploying heavy mining machinery in safe and healthy large surface mining environments. The smart and intelligent real-time monitoring system from this study, along with process optimization, minimizes the impact force on truck surface, which in turn reduces the level of vibration on the operator, thus leading to a safer and healthier working mining environments --Abstract, page iii

    Surface monitoring of road pavements using mobile crowdsensing technology

    Get PDF
    Pavement-surface characteristics should be considered during road maintenance for safe and comfortable driving. A detailed and up-to-date report of road-pavement network conditions is required to optimize a maintenance plan. However, manual road inspection methods, such as periodic visual surveys, are time-consuming and expensive. A common technology used to address this issue is SmartRoadSense, a collaborative system for the automatic detection of road-surface characteristics using Global Positioning System receivers and triaxial accelerometers contained in mobile devices. In this study, the results of the SmartRoadSense surveys conducted on Provincial Road 2 (SP2) in Salerno, Italy, were compared with the Distress Cadastre data for the same province and the pavement condition indices of different sections of the SP2. Although the effectiveness of the crowdsensing-based SmartRoadSense was found to vary with the distress type, the system was confirmed to be very efficient for monitoring the most critical road failures

    Variability of gravel pavement roughness: an analysis of the impact on vehicle dynamic response and driving comfort

    Get PDF
    Gravel pavement has lower construction costs but poorer performance than asphalt surfaces on roads. It also emits dust and deforms under the impact of vehicle loads and ambient air factors; the resulting ripples and ruts constantly deepen, and therefore increase vehicle vibrations and fuel consumption, and reduce safe driving speed and comfort. In this study, existing pavement quality evaluation indexes are analysed, and a methodology for adapting them for roads with gravel pavement is proposed. We report the measured wave depth and length of gravel pavement profile using the straightedge method on a 160 m long road section at three stages of road utilization. The measured pavement elevation was processed according to ISO 8608, and the frequency response of a vehicle was investigated using simulations in MATLAB/Simulink. The international roughness index (IRI) analysis showed that a speed of 30-45 km/h instead of 80 km/h provided the objective results of the IRI calculation on the flexible pavement due to the decreasing velocity of a vehicle’s unsprung mass on a more deteriorated road pavement state. The influence of the corrugation phenomenon of gravel pavement was explored, identifying specific driving safety and comfort cases. Finally, an increase in the dynamic load coefficient (DLC) at a low speed of 30 km/h on the most deteriorated pavement and a high speed of 90 km/h on the middle-quality pavement demonstrated the demand for timely gravel pavement maintenance and the complicated prediction of a safe driving speed for drivers. The main relevant objectives of this study are the adaptation of a road roughness indicator to gravel pavement, including the evaluation of vehicle dynamic responses at different speeds and pavement deterioration states
    corecore