462 research outputs found

    Anonymous Query Processing in Road Networks

    Full text link

    Anonymous Query Processing in Road Networks

    Get PDF
    The increasing availability of location-aware mobile devices has given rise to a flurry of location-based services (LBS). Due to the nature of spatial queries, an LBS needs the user position in order to process her requests. On the other hand, revealing exact user locations to a (potentially untrusted) LBS may pinpoint their identities and breach their privacy. To address this issue, spatial anonymity techniques obfuscate user locations, forwarding to the LBS a sufficiently large region instead. Existing methods explicitly target processing in the Euclidean space, and do not apply when proximity to the users is defined according to network distance (e.g., driving time through the roads of a city). In this paper, we propose a framework for anonymous query processing in road networks. We design location obfuscation techniques that (i) provide anonymous LBS access to the users, and (ii) allow efficient query processing at the LBS side. Our techniques exploit existing network database infrastructure, requiring no specialized storage schemes or functionalities. We experimentally compare alternative designs in real road networks and demonstrate the effectiveness of our techniques

    Privacy-preserving query transformation and processing in location based service

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    k-Trustee: Location Injection Attack-resilient Anonymization for Location Privacy

    Get PDF
    Cloaking-based location privacy preserving mechanisms have been widely adopted to protect users' location privacy when using location-based services. A fundamental limitation of such mechanisms is that users and their location information in the system are inherently trusted by the Anonymization Server without any verification. In this paper, we show that such an issue could lead to a new class of attacks called location injection attacks which can successfully violate users' in-distinguishability (guaranteed by k-Anonymity) among a set of users. We propose and characterize location injection attacks by presenting a set of attack models and quantify the costs associated with them. We then propose and evaluate k-Trustee, a trust-aware location cloaking mechanism that is resilient to location injection attacks and guarantees a lower bound on the user's in-distinguishability. k-Trustee guarantees that each user in a given cloaked region can achieve the required privacy level of k-Anonymity by including at least k-1 other trusted users in the cloaked region. We demonstrate the effectiveness of k-Trustee through extensive experiments in a real-world geographic map and our experimental results show that the proposed cloaking algorithm guaranteeing k-Trustee is effective against various location injection attacks

    Leveraging Client Processing for Location Privacy in Mobile Local Search

    Get PDF
    Usage of mobile services is growing rapidly. Most Internet-based services targeted for PC based browsers now have mobile counterparts. These mobile counterparts often are enhanced when they use user\u27s location as one of the inputs. Even some PC-based services such as point of interest Search, Mapping, Airline tickets, and software download mirrors now use user\u27s location in order to enhance their services. Location-based services are exactly these, that take the user\u27s location as an input and enhance the experience based on that. With increased use of these services comes the increased risk to location privacy. The location is considered an attribute that user\u27s hold as important to their privacy. Compromise of one\u27s location, in other words, loss of location privacy can have several detrimental effects on the user ranging from trivial annoyance to unreasonable persecution. More and more companies in the Internet economy rely exclusively on the huge data sets they collect about users. The more detailed and accurate the data a company has about its users, the more valuable the company is considered. No wonder that these companies are often the same companies that offer these services for free. This gives them an opportunity to collect more accurate location information. Research community in the location privacy protection area had to reciprocate by modeling an adversary that could be the service provider itself. To further drive this point, we show that a well-equipped service provider can infer user\u27s location even if the location information is not directly available by using other information he collects about the user. There is no dearth of proposals of several protocols and algorithms that protect location privacy. A lot of these earlier proposals require a trusted third party to play as an intermediary between the service provider and the user. These protocols use anonymization and/or obfuscation techniques to protect user\u27s identity and/or location. This requirement of trusted third parties comes with its own complications and risks and makes these proposals impractical in real life scenarios. Thus it is preferable that protocols do not require a trusted third party. We look at existing proposals in the area of private information retrieval. We present a brief survey of several proposals in the literature and implement two representative algorithms. We run experiments using different sizes of databases to ascertain their practicability and performance features. We show that private information retrieval based protocols still have long ways to go before they become practical enough for local search applications. We propose location privacy preserving mechanisms that take advantage of the processing power of modern mobile devices and provide configurable levels of location privacy. We propose these techniques both in the single query scenario and multiple query scenario. In single query scenario, the user issues a query to the server and obtains the answer. In the multiple query scenario, the user keeps sending queries as she moves about in the area of interest. We show that the multiple query scenario increases the accuracy of adversary\u27s determination of user\u27s location, and hence improvements are needed to cope with this situation. So, we propose an extension of the single query scenario that addresses this riskier multiple query scenario, still maintaining the practicability and acceptable performance when implemented on a modern mobile device. Later we propose a technique based on differential privacy that is inspired by differential privacy in statistical databases. All three mechanisms proposed by us are implemented in realistic hardware or simulators, run against simulated but real life data and their characteristics ascertained to show that they are practical and ready for adaptation. This dissertation study the privacy issues for location-based services in mobile environment and proposes a set of new techniques that eliminate the need for a trusted third party by implementing efficient algorithms on modern mobile hardware

    A survey of results on mobile phone datasets analysis

    Get PDF

    Advanced Location-Based Technologies and Services

    Get PDF
    Since the publication of the first edition in 2004, advances in mobile devices, positioning sensors, WiFi fingerprinting, and wireless communications, among others, have paved the way for developing new and advanced location-based services (LBSs). This second edition provides up-to-date information on LBSs, including WiFi fingerprinting, mobile computing, geospatial clouds, geospatial data mining, location privacy, and location-based social networking. It also includes new chapters on application areas such as LBSs for public health, indoor navigation, and advertising. In addition, the chapter on remote sensing has been revised to address advancements

    Exploring Interpersonal Relationships in Security Information Sharing

    Get PDF
    Information fraud is a significant problem for modern firms. Firms may share information about vulnerabilities, but prior research into sharing has delivered mixed results. Most prior research work has examined sharing at the organizational level and we know little of the role of interpersonal relationships in security information sharing. This paper uses a case study of a large Asia-Pacific telecommunications provider to develop theory about interpersonal security information sharing. The results suggest that sharing is promoted by trust, risk and uncertainty, knowledge management and relationship factors. Investigators shared information partly to overcome tensions with other business areas and to ameliorate operational risk perceptions. Interpersonal relationships allowed sharers to benefit from complementary and specialist knowledge in other firms, thereby translating the meaning of fraud information between business environments
    corecore