2,136 research outputs found

    Understanding Urban Mobility Using Crowdsourced GPS Data

    Get PDF
    No abstract available

    Applications of Trajectory Data From the Perspective of a Road Transportation Agency: Literature Review and Maryland Case Study

    Get PDF
    Transportation agencies have an opportunity to leverage increasingly-available trajectory datasets to improve their analyses and decision-making processes. However, this data is typically purchased from vendors, which means agencies must understand its potential benefits beforehand in order to properly assess its value relative to the cost of acquisition. While the literature concerned with trajectory data is rich, it is naturally fragmented and focused on technical contributions in niche areas, which makes it difficult for government agencies to assess its value across different transportation domains. To overcome this issue, the current paper explores trajectory data from the perspective of a road transportation agency interested in acquiring trajectories to enhance its analyses. The paper provides a literature review illustrating applications of trajectory data in six areas of road transportation systems analysis: demand estimation, modeling human behavior, designing public transit, traffic performance measurement and prediction, environment and safety. In addition, it visually explores 20 million GPS traces in Maryland, illustrating existing and suggesting new applications of trajectory data

    Path Clustering Based on a Novel Dissimilarity Function for Ride-Sharing Recommenders

    Get PDF
    Ride-sharing practice represents one of the possible answers to the traffic congestion problem in today's cities. In this scenario, recommenders aim to determine similarity among different paths with the aim of suggesting possible ride shares. In this paper, we propose a novel dissimilarity function between pairs of paths based on the construction of a shared path, which visits all points of the two paths by respecting the order of sequences within each of them. The shared path is computed as the shortest path on a directed acyclic graph with precedence constraints between the points of interest defined in the single paths. The dissimilarity function evaluates how much a user has to extend his/her path for covering the overall shared path. After computing the dissimilarity between any pair of paths, we execute a fuzzy relational clustering algorithm for determining groups of similar paths. Within these groups, the recommenders will choose users who can be invited to share rides. We show and discuss the results obtained by our approach on 45 paths

    Activity-Based Human Mobility Patterns Inferred from Mobile Phone Data: A Case Study of Singapore

    Get PDF
    In this study, with Singapore as an example, we demonstrate how we can use mobile phone call detail record (CDR) data, which contains millions of anonymous users, to extract individual mobility networks comparable to the activity-based approach. Such an approach is widely used in the transportation planning practice to develop urban micro simulations of individual daily activities and travel; yet it depends highly on detailed travel survey data to capture individual activity-based behavior. We provide an innovative data mining framework that synthesizes the state-of-the-art techniques in extracting mobility patterns from raw mobile phone CDR data, and design a pipeline that can translate the massive and passive mobile phone records to meaningful spatial human mobility patterns readily interpretable for urban and transportation planning purposes. With growing ubiquitous mobile sensing, and shrinking labor and fiscal resources in the public sector globally, the method presented in this research can be used as a low-cost alternative for transportation and planning agencies to understand the human activity patterns in cities, and provide targeted plans for future sustainable development.Singapore. National Research Foundation (through the Singapore-MIT Alliance for Research and Technology (SMART) Center for Future Urban Mobility (FM))Center for Complex Engineering Systems at MIT and KACS

    Analysis of Trajectories by Preserving Structural Information

    Get PDF
    The analysis of trajectories from traffic data is an established and yet fast growing area of research in the related fields of Geo-analytics and Geographic Information Systems (GIS). It has a broad range of applications that impact lives of millions of people, e.g., in urban planning, transportation and navigation systems and localized search methods. Most of these applications share some underlying basic tasks which are related to matching, clustering and classification of trajectories. And, these tasks in turn share some underlying problems, i.e., dealing with the noisy and variable length spatio-temporal sequences in the wild. In our view, these problems can be handled in a better manner by exploiting the spatio-temporal relationships (or structural information) in sampled trajectory points that remain considerably unharmed during the measurement process. Although, the usage of such structural information has allowed breakthroughs in other fields related to the analysis of complex data sets [18], surprisingly, there is no existing approach in trajectory analysis that looks at this structural information in a unified way across multiple tasks. In this thesis, we build upon these observations and give a unified treatment of structural information in order to improve trajectory analysis tasks. This treatment explores for the first time that sequences, graphs, and kernels are common to machine learning and geo-analytics. This common language allows to pool the corresponding methods and knowledge to help solving the challenges raised by the ever growing amount of movement data by developing new analysis models and methods. This is illustrated in several ways. For example, we introduce new problem settings, distance functions and a visualization scheme in the area of trajectory analysis. We also connect the broad fild of kernel methods to the analysis of trajectories, and, we strengthen and revisit the link between biological sequence methods and analysis of trajectories. Finally, the results of our experiments show that - by incorporating the structural information - our methods improve over state-of-the-art in the focused tasks, i.e., map matching, clustering and traffic event detection

    Understanding vehicular routing behavior with location-based service data

    Get PDF
    This is the final published version, also available from Springer Nature via the DOI in this record.Properly extracting patterns of individual mobility with high resolution data sources such as the one extracted from smartphone applications offers important opportunities. Potential opportunities not offered by call detailed records (CDRs), which offer resolutions triangulated from antennas, are route choices, travel modes detection and close encounters. Nowadays, there is not a standard and large scale data set collected over long periods that allows us to characterize these. In this work we thoroughly examine the use of data from smartphone applications, also referred to as location-based services (LBS) data, to extract and understand the vehicular route choice behavior. Taking the Dallas-Fort Worth metroplex as an example, we first extract the vehicular trips with simple rules and reconstruct the origin-destination matrix by coupling the extracted vehicular trips of the active LBS users and the United States census data. We then present a method to derive the commonly used routes by individuals from the LBS traces with varying sample rate intervals. We further inspect the relation between the number of routes and the trip characteristics, including the departure time, trip length and travel time. Specifically, we consider the travel time index and buffer index for the LBS users taking different number of routes. Empirical results demonstrate that during the peak hours, travelers tend to reduce the impact of traffic congestion by taking alternative routes. Overall, the proposed data analysis framework is cost-effective to treat sparse data generated from the use of smartphones to inform routing behavior. The potential in practice is to inform demand management strategies, by targeting individual users while generating large scale estimates of congestion mitigation.MIT Energy InitiativeBerkeley Deep Drive consortiu
    • …
    corecore