156 research outputs found

    A novel integrated method of detection-grasping for specific object based on the box coordinate matching

    Full text link
    To better care for the elderly and disabled, it is essential for service robots to have an effective fusion method of object detection and grasp estimation. However, limited research has been observed on the combination of object detection and grasp estimation. To overcome this technical difficulty, a novel integrated method of detection-grasping for specific object based on the box coordinate matching is proposed in this paper. Firstly, the SOLOv2 instance segmentation model is improved by adding channel attention module (CAM) and spatial attention module (SAM). Then, the atrous spatial pyramid pooling (ASPP) and CAM are added to the generative residual convolutional neural network (GR-CNN) model to optimize grasp estimation. Furthermore, a detection-grasping integrated algorithm based on box coordinate matching (DG-BCM) is proposed to obtain the fusion model of object detection and grasp estimation. For verification, experiments on object detection and grasp estimation are conducted separately to verify the superiority of improved models. Additionally, grasping tasks for several specific objects are implemented on a simulation platform, demonstrating the feasibility and effectiveness of DG-BCM algorithm proposed in this paper

    Efficient Fully Convolution Neural Network for Generating Pixel Wise Robotic Grasps With High Resolution Images

    Full text link
    This paper presents an efficient neural network model to generate robotic grasps with high resolution images. The proposed model uses fully convolution neural network to generate robotic grasps for each pixel using 400 Ă—\times 400 high resolution RGB-D images. It first down-sample the images to get features and then up-sample those features to the original size of the input as well as combines local and global features from different feature maps. Compared to other regression or classification methods for detecting robotic grasps, our method looks more like the segmentation methods which solves the problem through pixel-wise ways. We use Cornell Grasp Dataset to train and evaluate the model and get high accuracy about 94.42% for image-wise and 91.02% for object-wise and fast prediction time about 8ms. We also demonstrate that without training on the multiple objects dataset, our model can directly output robotic grasps candidates for different objects because of the pixel wise implementation.Comment: Submitted to ROBIO 201

    A Robotic Visual Grasping Design: Rethinking Convolution Neural Network with High-Resolutions

    Full text link
    High-resolution representations are important for vision-based robotic grasping problems. Existing works generally encode the input images into low-resolution representations via sub-networks and then recover high-resolution representations. This will lose spatial information, and errors introduced by the decoder will be more serious when multiple types of objects are considered or objects are far away from the camera. To address these issues, we revisit the design paradigm of CNN for robotic perception tasks. We demonstrate that using parallel branches as opposed to serial stacked convolutional layers will be a more powerful design for robotic visual grasping tasks. In particular, guidelines of neural network design are provided for robotic perception tasks, e.g., high-resolution representation and lightweight design, which respond to the challenges in different manipulation scenarios. We then develop a novel grasping visual architecture referred to as HRG-Net, a parallel-branch structure that always maintains a high-resolution representation and repeatedly exchanges information across resolutions. Extensive experiments validate that these two designs can effectively enhance the accuracy of visual-based grasping and accelerate network training. We show a series of comparative experiments in real physical environments at Youtube: https://youtu.be/Jhlsp-xzHFY

    Instance-wise Grasp Synthesis for Robotic Grasping

    Get PDF
    Generating high-quality instance-wise grasp configurations provides critical information of how to grasp specific objects in a multi-object environment and is of high importance for robot manipulation tasks. This work proposed a novel \textbf{S}ingle-\textbf{S}tage \textbf{G}rasp (SSG) synthesis network, which performs high-quality instance-wise grasp synthesis in a single stage: instance mask and grasp configurations are generated for each object simultaneously. Our method outperforms state-of-the-art on robotic grasp prediction based on the OCID-Grasp dataset, and performs competitively on the JACQUARD dataset. The benchmarking results showed significant improvements compared to the baseline on the accuracy of generated grasp configurations. The performance of the proposed method has been validated through both extensive simulations and real robot experiments for three tasks including single object pick-and-place, grasp synthesis in cluttered environments and table cleaning task

    Modular Anti-noise Deep Learning Network for Robotic Grasp Detection Based on RGB Images

    Full text link
    While traditional methods relies on depth sensors, the current trend leans towards utilizing cost-effective RGB images, despite their absence of depth cues. This paper introduces an interesting approach to detect grasping pose from a single RGB image. To this end, we propose a modular learning network augmented with grasp detection and semantic segmentation, tailored for robots equipped with parallel-plate grippers. Our network not only identifies graspable objects but also fuses prior grasp analyses with semantic segmentation, thereby boosting grasp detection precision. Significantly, our design exhibits resilience, adeptly handling blurred and noisy visuals. Key contributions encompass a trainable network for grasp detection from RGB images, a modular design facilitating feasible grasp implementation, and an architecture robust against common image distortions. We demonstrate the feasibility and accuracy of our proposed approach through practical experiments and evaluations

    Sim2Real Grasp Pose Estimation for Adaptive Robotic Applications

    Full text link
    Adaptive robotics plays an essential role in achieving truly co-creative cyber physical systems. In robotic manipulation tasks, one of the biggest challenges is to estimate the pose of given workpieces. Even though the recent deep-learning-based models show promising results, they require an immense dataset for training. In this paper, we propose two vision-based, multiobject grasp-pose estimation models, the MOGPE Real-Time (RT) and the MOGPE High-Precision (HP). Furthermore, a sim2real method based on domain randomization to diminish the reality gap and overcome the data shortage. We yielded an 80% and a 96.67% success rate in a real-world robotic pick-and-place experiment, with the MOGPE RT and the MOGPE HP model respectively. Our framework provides an industrial tool for fast data generation and model training and requires minimal domain-specific data.Comment: Submitted to the 22nd World Congress of the International Federation of Automatic Control (IFAC 2023

    Scene Understanding for Autonomous Manipulation with Deep Learning

    Get PDF
    Over the past few years, deep learning techniques have achieved tremendous success in many visual understanding tasks such as object detection, image segmentation, and caption generation. Despite this thriving in computer vision and natural language processing, deep learning has not yet shown signicant impact in robotics. Due to the gap between theory and application, there are many challenges when applying the results of deep learning to the real robotic systems. In this study, our long-term goal is to bridge the gap between computer vision and robotics by developing visual methods that can be used in real robots. In particular, this work tackles two fundamental visual problems for autonomous robotic manipulation: affordance detection and ne-grained action understanding. Theoretically, we propose dierent deep architectures to further improves the state of the art in each problem. Empirically, we show that the outcomes of our proposed methods can be applied in real robots and allow them to perform useful manipulation tasks
    • …
    corecore