22,699 research outputs found

    A Learning-Based Framework for Two-Dimensional Vehicle Maneuver Prediction over V2V Networks

    Full text link
    Situational awareness in vehicular networks could be substantially improved utilizing reliable trajectory prediction methods. More precise situational awareness, in turn, results in notably better performance of critical safety applications, such as Forward Collision Warning (FCW), as well as comfort applications like Cooperative Adaptive Cruise Control (CACC). Therefore, vehicle trajectory prediction problem needs to be deeply investigated in order to come up with an end to end framework with enough precision required by the safety applications' controllers. This problem has been tackled in the literature using different methods. However, machine learning, which is a promising and emerging field with remarkable potential for time series prediction, has not been explored enough for this purpose. In this paper, a two-layer neural network-based system is developed which predicts the future values of vehicle parameters, such as velocity, acceleration, and yaw rate, in the first layer and then predicts the two-dimensional, i.e. longitudinal and lateral, trajectory points based on the first layer's outputs. The performance of the proposed framework has been evaluated in realistic cut-in scenarios from Safety Pilot Model Deployment (SPMD) dataset and the results show a noticeable improvement in the prediction accuracy in comparison with the kinematics model which is the dominant employed model by the automotive industry. Both ideal and nonideal communication circumstances have been investigated for our system evaluation. For non-ideal case, an estimation step is included in the framework before the parameter prediction block to handle the drawbacks of packet drops or sensor failures and reconstruct the time series of vehicle parameters at a desirable frequency

    Motorcycle safety research project: Interim summary report 3: training and licensing interventions for risk taking and hazard perception for motorcyclists

    Get PDF
    Motorcycle trauma is a serious road safety issue in Queensland and throughout Australia. In 2009, Queensland Transport (later Transport and Main Roads or TMR) appointed CARRS-Q to provide a three-year program of Road Safety Research Services for Motorcycle Rider Safety. Funding for this research originated from the Motor Accident Insurance Commission. This program of research was undertaken to produce knowledge to assist TMR to improve motorcycle safety by further strengthening the licensing and training system to make learner riders safer by developing a pre-learner package (Deliverable 1), and by evaluating the QRide CAP program to ensure that it is maximally effective and contributes to the best possible training for new riders (Deliverable 2). The focus of this report is Deliverable 3 of the overall program of research. It identifies potential new licensing components that will reduce the incidence of risky riding and improve higher-order cognitive skills in new riders

    The highD Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems

    Full text link
    Scenario-based testing for the safety validation of highly automated vehicles is a promising approach that is being examined in research and industry. This approach heavily relies on data from real-world scenarios to derive the necessary scenario information for testing. Measurement data should be collected at a reasonable effort, contain naturalistic behavior of road users and include all data relevant for a description of the identified scenarios in sufficient quality. However, the current measurement methods fail to meet at least one of the requirements. Thus, we propose a novel method to measure data from an aerial perspective for scenario-based validation fulfilling the mentioned requirements. Furthermore, we provide a large-scale naturalistic vehicle trajectory dataset from German highways called highD. We evaluate the data in terms of quantity, variety and contained scenarios. Our dataset consists of 16.5 hours of measurements from six locations with 110 000 vehicles, a total driven distance of 45 000 km and 5600 recorded complete lane changes. The highD dataset is available online at: http://www.highD-dataset.comComment: IEEE International Conference on Intelligent Transportation Systems (ITSC) 201

    Application of Real Field Connected Vehicle Data for Aggressive Driving Identification on Horizontal Curves

    Get PDF
    The emerging technology of connected vehicles generates a vast amount of data that could be used to enhance roadway safety. In this paper, we focused on safety applications of a real field connected vehicle data on a horizontal curve. The database contains connected vehicle data that were collected on public roads in Ann Arbor, Michigan with instrumented vehicles. Horizontal curve negotiations are associated with a great number of accidents, which are mainly attributed to driving errors. Aggressive/risky driving is a contributing factor to the high rate of crashes on horizontal curves. Using basic safety message data in connected vehicle data set, this paper modeled aggressive/risky driving while negotiating a horizontal curve. The model was developed using the machine learning method of random forest to classify the value of time to lane crossing (TLC), a proxy for aggressive/risky driving, based on a set of motion-related metrics as features. Three scenarios were investigated considering different TLCs value for tagging aggressive driving moments. The model contributed to high detection accuracy in all three scenarios. This suggests that the motion-related variables used in the random forest model can accurately reflect drivers\u27 instantaneous decisions and identify their aggressive driving behavior. The results of this paper inform the design of warning/feedback systems and control assistance from unsafe events which are transmittable through vehicles-to-vehicles and vehicles-to-infrastructure applications

    Context-Aware Driver Distraction Severity Classification using LSTM Network

    Get PDF
    Advanced Driving Assistance Systems (ADAS) has been a critical component in vehicles and vital to the safety of vehicle drivers and public road transportation systems. In this paper, we present a deep learning technique that classifies drivers’ distraction behaviour using three contextual awareness parameters: speed, manoeuver and event type. Using a video coding taxonomy, we study drivers’ distractions based on events information from Regions of Interest (RoI) such as hand gestures, facial orientation and eye gaze estimation. Furthermore, a novel probabilistic (Bayesian) model based on the Long shortterm memory (LSTM) network is developed for classifying driver’s distraction severity. This paper also proposes the use of frame-based contextual data from the multi-view TeleFOT naturalistic driving study (NDS) data monitoring to classify the severity of driver distractions. Our proposed methodology entails recurrent deep neural network layers trained to predict driver distraction severity from time series data
    corecore