12,805 research outputs found

    An Empirical Comparison of Three Inference Methods

    Full text link
    In this paper, an empirical evaluation of three inference methods for uncertain reasoning is presented in the context of Pathfinder, a large expert system for the diagnosis of lymph-node pathology. The inference procedures evaluated are (1) Bayes' theorem, assuming evidence is conditionally independent given each hypothesis; (2) odds-likelihood updating, assuming evidence is conditionally independent given each hypothesis and given the negation of each hypothesis; and (3) a inference method related to the Dempster-Shafer theory of belief. Both expert-rating and decision-theoretic metrics are used to compare the diagnostic accuracy of the inference methods.Comment: Appears in Proceedings of the Fourth Conference on Uncertainty in Artificial Intelligence (UAI1988

    A Utility-Theoretic Approach to Privacy in Online Services

    Get PDF
    Online offerings such as web search, news portals, and e-commerce applications face the challenge of providing high-quality service to a large, heterogeneous user base. Recent efforts have highlighted the potential to improve performance by introducing methods to personalize services based on special knowledge about users and their context. For example, a user's demographics, location, and past search and browsing may be useful in enhancing the results offered in response to web search queries. However, reasonable concerns about privacy by both users, providers, and government agencies acting on behalf of citizens, may limit access by services to such information. We introduce and explore an economics of privacy in personalization, where people can opt to share personal information, in a standing or on-demand manner, in return for expected enhancements in the quality of an online service. We focus on the example of web search and formulate realistic objective functions for search efficacy and privacy. We demonstrate how we can find a provably near-optimal optimization of the utility-privacy tradeoff in an efficient manner. We evaluate our methodology on data drawn from a log of the search activity of volunteer participants. We separately assess usersā€™ preferences about privacy and utility via a large-scale survey, aimed at eliciting preferences about peoplesā€™ willingness to trade the sharing of personal data in returns for gains in search efficiency. We show that a significant level of personalization can be achieved using a relatively small amount of information about users

    A probabilistic model for information and sensor validation

    Get PDF
    This paper develops a new theory and model for information and sensor validation. The model represents relationships between variables using Bayesian networks and utilizes probabilistic propagation to estimate the expected values of variables. If the estimated value of a variable differs from the actual value, an apparent fault is detected. The fault is only apparent since it may be that the estimated value is itself based on faulty data. The theory extends our understanding of when it is possible to isolate real faults from potential faults and supports the development of an algorithm that is capable of isolating real faults without deferring the problem to the use of expert provided domain-specific rules. To enable practical adoption for real-time processes, an any time version of the algorithm is developed, that, unlike most other algorithms, is capable of returning improving assessments of the validity of the sensors as it accumulates more evidence with time. The developed model is tested by applying it to the validation of temperature sensors during the start-up phase of a gas turbine when conditions are not stable; a problem that is known to be challenging. The paper concludes with a discussion of the practical applicability and scalability of the model

    Modus Ponens and the Logic of Decision

    Get PDF
    If modus ponens is valid, then you should take up smoking

    Inducing safer oblique trees without costs

    Get PDF
    Decision tree induction has been widely studied and applied. In safety applications, such as determining whether a chemical process is safe or whether a person has a medical condition, the cost of misclassification in one of the classes is significantly higher than in the other class. Several authors have tackled this problem by developing cost-sensitive decision tree learning algorithms or have suggested ways of changing the distribution of training examples to bias the decision tree learning process so as to take account of costs. A prerequisite for applying such algorithms is the availability of costs of misclassification. Although this may be possible for some applications, obtaining reasonable estimates of costs of misclassification is not easy in the area of safety. This paper presents a new algorithm for applications where the cost of misclassifications cannot be quantified, although the cost of misclassification in one class is known to be significantly higher than in another class. The algorithm utilizes linear discriminant analysis to identify oblique relationships between continuous attributes and then carries out an appropriate modification to ensure that the resulting tree errs on the side of safety. The algorithm is evaluated with respect to one of the best known cost-sensitive algorithms (ICET), a well-known oblique decision tree algorithm (OC1) and an algorithm that utilizes robust linear programming
    • ā€¦
    corecore