4,113 research outputs found

    Alert-BDI: BDI Model with Adaptive Alertness through Situational Awareness

    Full text link
    In this paper, we address the problems faced by a group of agents that possess situational awareness, but lack a security mechanism, by the introduction of a adaptive risk management system. The Belief-Desire-Intention (BDI) architecture lacks a framework that would facilitate an adaptive risk management system that uses the situational awareness of the agents. We extend the BDI architecture with the concept of adaptive alertness. Agents can modify their level of alertness by monitoring the risks faced by them and by their peers. Alert-BDI enables the agents to detect and assess the risks faced by them in an efficient manner, thereby increasing operational efficiency and resistance against attacks.Comment: 14 pages, 3 figures. Submitted to ICACCI 2013, Mysore, Indi

    Applying tropos to socio-technical system design and runtime configuration

    Get PDF
    Recent trends in Software Engineering have introduced the importance of reconsidering the traditional idea of software design as a socio-tecnical problem, where human agents are integral part of the system along with hardware and software components. Design and runtime support for Socio-Technical Systems (STSs) requires appropriate modeling techniques and non-traditional infrastructures. Agent-oriented software methodologies are natural solutions to the development of STSs, both humans and technical components are conceptualized and analyzed as part of the same system. In this paper, we illustrate a number of Tropos features that we believe fundamental to support the development and runtime reconfiguration of STSs. Particularly, we focus on two critical design issues: risk analysis and location variability. We show how they are integrated and used into a planning-based approach to support the designer in evaluating and choosing the best design alternative. Finally, we present a generic framework to develop self-reconfigurable STSs

    CAMP-BDI: an approach for multiagent systems robustness through capability-aware agents maintaining plans

    Get PDF
    Rational agent behaviour is frequently achieved through the use of plans, particularly within the widely used BDI (Belief-Desire-Intention) model for intelligent agents. As a consequence, preventing or handling failure of planned activity is a vital component in building robust multiagent systems; this is especially true in realistic environments, where unpredictable exogenous change during plan execution may threaten intended activities. Although reactive approaches can be employed to respond to activity failure through replanning or plan-repair, failure may have debilitative effects that act to stymie recovery and, potentially, hinder subsequent activity. A further factor is that BDI agents typically employ deterministic world and plan models, as probabilistic planning methods are typical intractable in realistically complex environments. However, deterministic operator preconditions may fail to represent world states which increase the risk of activity failure. The primary contribution of this thesis is the algorithmic design of the CAMP-BDI (Capability Aware, Maintaining Plans) approach; a modification of the BDI reasoning cycle which provides agents with beliefs and introspective reasoning to anticipate increased risk of failure and pro-actively modify intended plans in response. We define a capability meta-knowledge model, providing information to identify and address threats to activity success using precondition modelling and quantitative quality estimation. This also facilitates semantic-independent communication of capability information for general advertisement and of dependency information - we define use of the latter, within a structured messaging approach, to extend local agent algorithms towards decentralized, distributed robustness. Finally, we define a policy based approach for dynamic modification of maintenance behaviour, allowing response to observations made during runtime and with potential to improve re-usability of agents in alternate environments. An implementation of CAMP-BDI is compared against an equivalent reactive system through experimentation in multiple perturbation configurations, using a logistics domain. Our empirical evaluation indicates CAMP-BDI has significant benefit if activity failure carries a strong risk of debilitative consequence

    An Abstract Formal Basis for Digital Crowds

    Get PDF
    Crowdsourcing, together with its related approaches, has become very popular in recent years. All crowdsourcing processes involve the participation of a digital crowd, a large number of people that access a single Internet platform or shared service. In this paper we explore the possibility of applying formal methods, typically used for the verification of software and hardware systems, in analysing the behaviour of a digital crowd. More precisely, we provide a formal description language for specifying digital crowds. We represent digital crowds in which the agents do not directly communicate with each other. We further show how this specification can provide the basis for sophisticated formal methods, in particular formal verification.Comment: 32 pages, 4 figure

    BDI reasoning with normative considerations

    Get PDF
    F. Meneguzzi thanks Fundaç ao de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS, Brazil) for the financial support through the ACI program (Grant ref. 3541-2551/12-0) and the ARD program (Grant ref. 12/0808-5), as well as Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) through the Universal Call (Grant ref. 482156/2013-9) and PQ fellowship (Grant ref. 306864/2013-4). N. Oren and W.W. Vasconcelos acknowledge the support of the Engineering and Physical Sciences Research Council (EPSRC, UK) within the research project “Scrutable Autonomous Systems” (SAsSY11, Grant ref. EP/J012084/1).Peer reviewedPostprin

    Towards Verifiably Ethical Robot Behaviour

    Full text link
    Ensuring that autonomous systems work ethically is both complex and difficult. However, the idea of having an additional `governor' that assesses options the system has, and prunes them to select the most ethical choices is well understood. Recent work has produced such a governor consisting of a `consequence engine' that assesses the likely future outcomes of actions then applies a Safety/Ethical logic to select actions. Although this is appealing, it is impossible to be certain that the most ethical options are actually taken. In this paper we extend and apply a well-known agent verification approach to our consequence engine, allowing us to verify the correctness of its ethical decision-making.Comment: Presented at the 1st International Workshop on AI and Ethics, Sunday 25th January 2015, Hill Country A, Hyatt Regency Austin. Will appear in the workshop proceedings published by AAA

    Agents for educational games and simulations

    Get PDF
    This book consists mainly of revised papers that were presented at the Agents for Educational Games and Simulation (AEGS) workshop held on May 2, 2011, as part of the Autonomous Agents and MultiAgent Systems (AAMAS) conference in Taipei, Taiwan. The 12 full papers presented were carefully reviewed and selected from various submissions. The papers are organized topical sections on middleware applications, dialogues and learning, adaption and convergence, and agent applications

    An Analysis of the Notion of Need for the Representation of Public Services

    Get PDF
    Many Public Administrations structure their services around the notion of users’ need. However, there is a gap between private, subjectively perceived needs (self-attributed) and needs that are attributed by PA to citizens (heteroattributed). Because of the gap, citizens’ needs are often only partially satisfied by PAs services. This gap is in part due to the fact that the meaning of the word “need” is ambiguous and full of antinomic nuances. The purpose of this paper is to formulate a definition of “need” suitable for citizens’ needs management with respect to PA’s services offering, and to provide an accurate ontological analysis of the notion of “need” and the network of concepts that relate to it
    corecore