509 research outputs found

    Empirical Analysis of Regime-Focused Asset Allocation Strategies within a Markov Switching Framework

    Get PDF
    This thesis consists of three papers examining the relationship between key macro-economic variables and optimal asset allocation strategies. We find evidence that asset prices behave differently depending upon the underlying economic regime. A regime-based asset allocation strategy seeks to integrate a full suite of securities across the full business cycle. We find additional evidence supporting the linkages in the literature between dynamic portfolio optimization and tactical rebalancing across unique state spaces. Paper 1 seeks to test and confirm whether the joint distribution of equity, fixed income and gold returns pursue a dynamic, non-linear pattern. We illustrate the benefits of utilising a time-varying, Markov-switching regime-based framework to forecast expected returns. Long-run historical monthly returns dating back to 1968 were used to assess return predictability. We adopt a unique approach for our empirical analysis amongst the existing regime-shifting literature by segmenting our full 50-year sample period (1968-2019) into three specific regimes (1968-1983), (1984-2007) & (2008-2019). We find evidence that supports the presence of a low-volatility premium. Economic regimes appear to be ordered by the intrinsic nature of their volatility. We have produced robust evidence supporting the negative risk-reward relationship between international equity markets and volatility. Our findings support the theories that exposures to gold offer attractive diversification benefits, particularly to equity investors. Across all four of the individual study sample periods monthly gold returns outperform during periods of excess volatility. Regime classification is structured upon a combination of empirical evidence and proven economic principles. Regimes are ordered in terms of factor exposures to economic growth, inflation and volatility. We construct a 2 x 2 factor model of growth and inflation characterised by a four-quadrant internal system. These internal regimes are classified by a combination of factors. The first order effects relate to the inter-relationship or covariance between growth and inflation. The second order effects constitute the policy response to this environment. Multiple linear modelling equations are used to identify causal relationships between dependent financial assets and our predictor variables. These were split between regime-agnostic, contiguous data sampling methods and regime-specific, non-contiguous data sampling. The findings appear consistent with the prevailing macroeconomic theory that broader equity market returns outperform gold, fixed income and commodity assets during specific market regimes and that gold should outperform the S&P500 across inflationary regimes. In paper 3 there was a focus on whether dynamic asset allocation strategies can capture enhanced portfolio opportunities through profitable sector pivots, factor exposures and optimization. We developed a unique leading indicator framework utilising statistically significant predictor variables to inform the regime-based asset allocation process. Furthermore, robustness checks were conducted across a diverse range of assets including individual equity sectors, mutual funds, tradeable assets and investment factors. This study is distinctive in its approach of utilising this Bayesian grounded leading indicator framework and in the scope of the assets used to test its robustness

    Advanced Process Monitoring for Industry 4.0

    Get PDF
    This book reports recent advances on Process Monitoring (PM) to cope with the many challenges raised by the new production systems, sensors and “extreme data” conditions that emerged with Industry 4.0. Concepts such as digital-twins and deep learning are brought to the PM arena, pushing forward the capabilities of existing methodologies to handle more complex scenarios. The evolution of classical paradigms such as Latent Variable modeling, Six Sigma and FMEA are also covered. Applications span a wide range of domains such as microelectronics, semiconductors, chemicals, materials, agriculture, as well as the monitoring of rotating equipment, combustion systems and membrane separation processes

    A Statistical Approach to the Alignment of fMRI Data

    Get PDF
    Multi-subject functional Magnetic Resonance Image studies are critical. The anatomical and functional structure varies across subjects, so the image alignment is necessary. We define a probabilistic model to describe functional alignment. Imposing a prior distribution, as the matrix Fisher Von Mises distribution, of the orthogonal transformation parameter, the anatomical information is embedded in the estimation of the parameters, i.e., penalizing the combination of spatially distant voxels. Real applications show an improvement in the classification and interpretability of the results compared to various functional alignment methods

    A comparison of the CAR and DAGAR spatial random effects models with an application to diabetics rate estimation in Belgium

    Get PDF
    When hierarchically modelling an epidemiological phenomenon on a finite collection of sites in space, one must always take a latent spatial effect into account in order to capture the correlation structure that links the phenomenon to the territory. In this work, we compare two autoregressive spatial models that can be used for this purpose: the classical CAR model and the more recent DAGAR model. Differently from the former, the latter has a desirable property: its ρ parameter can be naturally interpreted as the average neighbor pair correlation and, in addition, this parameter can be directly estimated when the effect is modelled using a DAGAR rather than a CAR structure. As an application, we model the diabetics rate in Belgium in 2014 and show the adequacy of these models in predicting the response variable when no covariates are available

    Mixed structural models for decision making under uncertainty using stochastic system simulation and experimental economic methods: application to information security control choice

    Get PDF
    This research is concerned with whether and to what extent information security managers may be biased in their evaluation of and decision making over the quantifiable risks posed by information management systems where the circumstances may be characterized by uncertainty in both the risk inputs (e.g. system threat and vulnerability factors) and outcomes (actual efficacy of the selected security controls and the resulting system performance and associated business impacts). Although ‘quantified security’ and any associated risk management remains problematic from both a theoretical and empirical perspective (Anderson 2001; Verendel 2009; Appari 2010), professional practitioners in the field of information security continue to advocate the consideration of quantitative models for risk analysis and management wherever possible because those models permit a reliable economic determination of optimal operational control decisions (Littlewood, Brocklehurst et al. 1993; Nicol, Sanders et al. 2004; Anderson and Moore 2006; Beautement, Coles et al. 2009; Anderson 2010; Beresnevichiene, Pym et al. 2010; Wolter and Reinecke 2010; Li, Parker et al. 2011) The main contribution of this thesis is to bring current quantitative economic methods and experimental choice models to the field of information security risk management to examine the potential for biased decision making by security practitioners, under conditions where information may be relatively objective or subjective and to demonstrate the potential for informing decision makers about these biases when making control decisions in a security context. No single quantitative security approach appears to have formally incorporated three key features of the security risk management problem addressed in this research: 1) the inherently stochastic nature of the information system inputs and outputs which contribute directly to decisional uncertainty (Conrad 2005; Wang, Chaudhury et al. 2008; Winkelvos, Rudolph et al. 2011); 2) the endogenous estimation of a decision maker’s risk attitude using models which otherwise typically assume risk neutrality or an inherent degree of risk aversion (Danielsson 2002; Harrison, Johnson et al. 2003); and 3) the application of structural modelling which allows for the possible combination and weighting between multiple latent models of choice (Harrison and Rutström 2009). The identification, decomposition and tractability of these decisional factors is of crucial importance to understanding the economic trade-offs inherent in security control choice under conditions of both risk and uncertainty, particularly where established psychological decisional biases such as ambiguity aversion (Ellsberg 1961) or loss aversion (Kahneman and Tversky 1984) may be assumed to be endemic to, if not magnified by, the institutional setting in which these decisions take place. Minimally, risk averse managers may simply be overspending on controls, overcompensating for anticipated losses that do not actually occur with the frequency or impact they imagine. On the other hand, risk-seeking managers, where they may exist (practitioners call them ‘cowboys’ – they are a familiar player in equally risky financial markets) may be simply gambling against ultimately losing odds, putting the entire firm at risk of potentially catastrophic security losses. Identifying and correcting for these scenarios would seem to be increasingly important for now universally networked business computing infrastructures. From a research design perspective, the field of behavioural economics has made significant and recent contributions to the empirical evaluation of psychological theories of decision making under uncertainty (Andersen, Harrison et al. 2007) and provides salient examples of lab experiments which can be used to elicit and isolate a range of latent decision-making behaviours for choice under risk and uncertainty within relatively controlled conditions versus those which might be obtainable in the field (Harrison and Rutström 2008). My research builds on recent work in the domain of information security control choice by 1) undertaking a series of lab experiments incorporating a stochastic model of a simulated information management system at risk which supports the generation of observational data derived from a range of security control choice decisions under both risk and uncertainty (Baldwin, Beres et al. 2011); and 2) modeling the resulting decisional biases using structural models of choice under risk and uncertainty (ElGamal and Grether 1995; Harrison and Rutström 2009; Keane 2010). The research contribution consists of the novel integration of a model of stochastic system risk and domain relevant structural utility modeling using a mixed model specification for estimation of the latent decision making behaviour. It is anticipated that the research results can be applied to the real world problem of ‘tuning’ quantitative information security risk management models to the decisional biases and characteristics of the decision maker (Abdellaoui and Munier 1998

    Comparative Analysis of Student Learning: Technical, Methodological and Result Assessing of PISA-OECD and INVALSI-Italian Systems .

    Get PDF
    PISA is the most extensive international survey promoted by the OECD in the field of education, which measures the skills of fifteen-year-old students from more than 80 participating countries every three years. INVALSI are written tests carried out every year by all Italian students in some key moments of the school cycle, to evaluate the levels of some fundamental skills in Italian, Mathematics and English. Our comparison is made up to 2018, the last year of the PISA-OECD survey, even if INVALSI was carried out for the last edition in 2022. Our analysis focuses attention on the common part of the reference populations, which are the 15-year-old students of the 2nd class of secondary schools of II degree, where both sources give a similar picture of the students

    Essentials of Business Analytics

    Get PDF
    • 

    corecore