6,327 research outputs found

    Risk-sensitive average optimality in Markov decision processes

    Get PDF
    summary:In this note attention is focused on finding policies optimizing risk-sensitive optimality criteria in Markov decision chains. To this end we assume that the total reward generated by the Markov process is evaluated by an exponential utility function with a given risk-sensitive coefficient. The ratio of the first two moments depends on the value of the risk-sensitive coefficient; if the risk-sensitive coefficient is equal to zero we speak on risk-neutral models. Observe that the first moment of the generated reward corresponds to the expectation of the total reward and the second central moment of the reward variance. For communicating Markov processes and for some specific classes of unichain processes long run risk-sensitive average reward is independent of the starting state. In this note we present necessary and sufficient condition for existence of optimal policies independent of the starting state in unichain models and characterize the class of average risk-sensitive optimal policies

    Continuous-time Markov decision processes under the risk-sensitive average cost criterion

    Full text link
    This paper studies continuous-time Markov decision processes under the risk-sensitive average cost criterion. The state space is a finite set, the action space is a Borel space, the cost and transition rates are bounded, and the risk-sensitivity coefficient can take arbitrary positive real numbers. Under the mild conditions, we develop a new approach to establish the existence of a solution to the risk-sensitive average cost optimality equation and obtain the existence of an optimal deterministic stationary policy.Comment: 14 page

    Risk Aversion in Finite Markov Decision Processes Using Total Cost Criteria and Average Value at Risk

    Full text link
    In this paper we present an algorithm to compute risk averse policies in Markov Decision Processes (MDP) when the total cost criterion is used together with the average value at risk (AVaR) metric. Risk averse policies are needed when large deviations from the expected behavior may have detrimental effects, and conventional MDP algorithms usually ignore this aspect. We provide conditions for the structure of the underlying MDP ensuring that approximations for the exact problem can be derived and solved efficiently. Our findings are novel inasmuch as average value at risk has not previously been considered in association with the total cost criterion. Our method is demonstrated in a rapid deployment scenario, whereby a robot is tasked with the objective of reaching a target location within a temporal deadline where increased speed is associated with increased probability of failure. We demonstrate that the proposed algorithm not only produces a risk averse policy reducing the probability of exceeding the expected temporal deadline, but also provides the statistical distribution of costs, thus offering a valuable analysis tool

    Budgeted Reinforcement Learning in Continuous State Space

    Get PDF
    A Budgeted Markov Decision Process (BMDP) is an extension of a Markov Decision Process to critical applications requiring safety constraints. It relies on a notion of risk implemented in the shape of a cost signal constrained to lie below an - adjustable - threshold. So far, BMDPs could only be solved in the case of finite state spaces with known dynamics. This work extends the state-of-the-art to continuous spaces environments and unknown dynamics. We show that the solution to a BMDP is a fixed point of a novel Budgeted Bellman Optimality operator. This observation allows us to introduce natural extensions of Deep Reinforcement Learning algorithms to address large-scale BMDPs. We validate our approach on two simulated applications: spoken dialogue and autonomous driving.Comment: N. Carrara and E. Leurent have equally contribute
    corecore