3,183 research outputs found

    Risk-Sensitive Optimal Feedback Control Accounts for Sensorimotor Behavior under Uncertainty

    Get PDF
    Many aspects of human motor behavior can be understood using optimality principles such as optimal feedback control. However, these proposed optimal control models are risk-neutral; that is, they are indifferent to the variability of the movement cost. Here, we propose the use of a risk-sensitive optimal controller that incorporates movement cost variance either as an added cost (risk-averse controller) or as an added value (risk-seeking controller) to model human motor behavior in the face of uncertainty. We use a sensorimotor task to test the hypothesis that subjects are risk-sensitive. Subjects controlled a virtual ball undergoing Brownian motion towards a target. Subjects were required to minimize an explicit cost, in points, that was a combination of the final positional error of the ball and the integrated control cost. By testing subjects on different levels of Brownian motion noise and relative weighting of the position and control cost, we could distinguish between risk-sensitive and risk-neutral control. We show that subjects change their movement strategy pessimistically in the face of increased uncertainty in accord with the predictions of a risk-averse optimal controller. Our results suggest that risk-sensitivity is a fundamental attribute that needs to be incorporated into optimal feedback control models

    Risk-Sensitivity in Sensorimotor Control

    Get PDF
    Recent advances in theoretical neuroscience suggest that motor control can be considered as a continuous decision-making process in which uncertainty plays a key role. Decision-makers can be risk-sensitive with respect to this uncertainty in that they may not only consider the average payoff of an outcome, but also consider the variability of the payoffs. Although such risk-sensitivity is a well-established phenomenon in psychology and economics, it has been much less studied in motor control. In fact, leading theories of motor control, such as optimal feedback control, assume that motor behaviors can be explained as the optimization of a given expected payoff or cost. Here we review evidence that humans exhibit risk-sensitivity in their motor behaviors, thereby demonstrating sensitivity to the variability of “motor costs.” Furthermore, we discuss how risk-sensitivity can be incorporated into optimal feedback control models of motor control. We conclude that risk-sensitivity is an important concept in understanding individual motor behavior under uncertainty

    Time-Integrated Position Error Accounts for Sensorimotor Behavior in Time-Constrained Tasks

    Get PDF
    Several studies have shown that human motor behavior can be successfully described using optimal control theory, which describes behavior by optimizing the trade-off between the subject's effort and performance. This approach predicts that subjects reach the goal exactly at the final time. However, another strategy might be that subjects try to reach the target position well before the final time to avoid the risk of missing the target. To test this, we have investigated whether minimizing the control effort and maximizing the performance is sufficient to describe human motor behavior in time-constrained motor tasks. In addition to the standard model, we postulate a new model which includes an additional cost criterion which penalizes deviations between the position of the effector and the target throughout the trial, forcing arrival on target before the final time. To investigate which model gives the best fit to the data and to see whether that model is generic, we tested both models in two different tasks where subjects used a joystick to steer a ball on a screen to hit a target (first task) or one of two targets (second task) before a final time. Noise of different amplitudes was superimposed on the ball position to investigate the ability of the models to predict motor behavior for different levels of uncertainty. The results show that a cost function representing only a trade-off between effort and accuracy at the end time is insufficient to describe the observed behavior. The new model correctly predicts that subjects steer the ball to the target position well before the final time is reached, which is in agreement with the observed behavior. This result is consistent for all noise amplitudes and for both tasks

    Neuromotor Noise, Error Tolerance and Velocity-Dependent Costs in Skilled Performance

    Get PDF
    In motor tasks with redundancy neuromotor noise can lead to variations in execution while achieving relative invariance in the result. The present study examined whether humans find solutions that are tolerant to intrinsic noise. Using a throwing task in a virtual set-up where an infinite set of angle and velocity combinations at ball release yield throwing accuracy, our computational approach permitted quantitative predictions about solution strategies that are tolerant to noise. Based on a mathematical model of the task expected results were computed and provided predictions about error-tolerant strategies (Hypothesis 1). As strategies can take on a large range of velocities, a second hypothesis was that subjects select strategies that minimize velocity at release to avoid costs associated with signal- or velocity-dependent noise or higher energy demands (Hypothesis 2). Two experiments with different target constellations tested these two hypotheses. Results of Experiment 1 showed that subjects chose solutions with high error-tolerance, although these solutions also had relatively low velocity. These two benefits seemed to outweigh that for many subjects these solutions were close to a high-penalty area, i.e. they were risky. Experiment 2 dissociated the two hypotheses. Results showed that individuals were consistent with Hypothesis 1 although their solutions were distributed over a range of velocities. Additional analyses revealed that a velocity-dependent increase in variability was absent, probably due to the presence of a solution manifold that channeled variability in a task-specific manner. Hence, the general acceptance of signal-dependent noise may need some qualification. These findings have significance for the fundamental understanding of how the central nervous system deals with its inherent neuromotor noise

    Embodied skillful performance: where the action is

    Get PDF
    © 2021, The Author(s). When someone masters a skill, their performance looks to us like second nature: it looks as if their actions are smoothly performed without explicit, knowledge-driven, online monitoring of their performance. Contemporary computational models in motor control theory, however, are instructionist: that is, they cast skillful performance as a knowledge-driven process. Optimal motor control theory (OMCT), as representative par excellence of such approaches, casts skillful performance as an instruction, instantiated in the brain, that needs to be executed—a motor command. This paper aims to show the limitations of such instructionist approaches to skillful performance. We specifically address the question of whether the assumption of control-theoretic models is warranted. The first section of this paper examines the instructionist assumption, according to which skillful performance consists of the execution of theoretical instructions harnessed in motor representations. The second and third sections characterize the implementation of motor representations as motor commands, with a special focus on formulations from OMCT. The final sections of this paper examine predictive coding and active inference—behavioral modeling frameworks that descend, but are distinct, from OMCT—and argue that the instructionist, control-theoretic assumptions are ill-motivated in light of new developments in active inference

    Embodied Skillful Performance: Where the Action Is

    Get PDF
    When someone masters a skill, their performance looks to us like second nature: it looks as if their actions are performed smoothly without explicit, knowledge-driven, online monitoring of their performance. Contemporary computational models in motor control theory, however, are instructionist. That is, they cast skilful performance as a knowledge-driven process, one that is driven by explicit motor representations of the action to be performed skillfully, which harness instructions for performance. Optimal control theory, a popular representative of such approaches, casts skillful performance as the execution of motor commands, the deliverances of a motor control system implemented by separable forward and inverse models that work in tandem with a state estimator to control the motor plant. These models rest on the principle that motor control is realized by the concerted action of separate modular subsystems, which transform an explicit motor representation into a sequence of physical movements. This paper aims to show the limitations of such instructionist approaches to skillful performance. Specifically, we address whether the assumption of modular knowledge-driven motor control in optimal control theory (based on motor commands computed by separable state estimators, forward models, and inverse models) is warranted. The first section of this paper examines the instructionist assumption, according to which skillful performance consists in the execution of instructions invested in motor representations. The second and third sections characterize the implementation of motor representations as motor commands, with a special focus on formulations from optimal control theory. The final sections of this paper examine predictive coding and active inference – behavioral modeling frameworks that descend, but are distinct, from optimal control theory – and argue that the instructionist assumption is ill-motivated in light of new developments in motor control theory, which cast motor control and motor planning as a form of (active) inference
    corecore