626 research outputs found

    Peer-to-peer energy trading between wind power producer and demand response aggregators for scheduling joint energy and reserve

    Get PDF
    In this article, a stochastic decision-making framework is presented in which a wind power producer (WPP) provides some required reserve capacity from demand response aggregators (DRAs) in a peer-to-peer (P2P) structure. In this structure, each DRA is able to choose the most competitive WPP, and purchase energy and sell reserve capacity to that WPP under a bilateral contract-based P2P electricity trading mechanism. Based on this structure, the WPP can determine the optimal buying reserve from DRAs to offset part of wind power deviation. The proposed framework is formulated as a bilevel stochastic model in which the upper level maximizes the WPP's profit based on the optimal bidding in the day-ahead and balancing markets, whereas the lower level minimizes DRAs' costs. In order to incorporate the risk associated with the WPP's decisions and to assess the effect of scheduling reserves on the profit variability, conditional value at risk is employed.©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    Strategic Offering of a Price Maker Wind Power Producer in Distribution-Level Energy Markets in Presence of Flexible Prosumers

    Get PDF
    This paper presents an optimal bidding strategy for a strategic wind power producer (WPP) in a distribution-level energy market (DLEM). The behavior of the WPP is modelled through a bi-level stochastic optimization problem where the upper-level problem maximizes the profit of the WPP and the lower-level problem describes the clearing processes of the DLEM while considering network constraints. The bi-level problem is a stochastic mathematical program with equilibrium constraints (MPEC) that is formulated as a mixed-integer linear programming (MILP) problem. The main focus of this study is investigating prosumers’ impact on the market power of the strategic WPP in a DLEM structure. In this model, the effect of flexible prosumers from the aspects of demand response (DR) participants and photovoltaic penetration level (PVPL) on the WPP’s offering strategy is investigated. Moreover, the impact of bilateral contract on the market power of the strategic WPP and the cleared prices of the network is addressed. The proposed model is implemented in an IEEE 33-bus and numerical results illustrate how behavior of flexible prosumers and PVPL index affect the decision making of the strategic WPP when network constraints are considered. Numerical results show that by active participation of prosumers in DR programs, the reliance of DLEM on the strategic WPP reduces. Moreover, if the WPP participates in bilateral contracts, its offering to the DELM decreases, and as the result, the cleared prices augment indicating market power of the WPP.© 2022 Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/fi=vertaisarvioitu|en=peerReviewed

    A regret-based stochastic bi-level framework for scheduling of DR aggregator under uncertainties

    Get PDF
    A regret-based stochastic bi-level framework for optimal decision making of a demand response (DR) aggregator to purchase energy from short term electricity market and wind generation units is proposed. Based on this model, the aggregator offers selling prices to the customers, aiming to maximize its expected profit in a competitive market. The clients’ reactions to the offering prices of aggregators and competition among rival aggregators are explicitly considered in the proposed model. Different sources of uncertainty impressing the decisions made by the aggregator are characterized via a set of scenarios and are accounted for by using stochastic programming. Conditional value-at-risk (CVaR) is used for minimizing the expected value of regret over a set of worst scenarios whose collective probability is lower than a limitation value. Simulations are carried out to compare CVaR-based approach with value-at-risk (VaR) concept and traditional scenario based stochastic programming (SBSP) strategy. The findings show that the proposed CVaR strategy outperforms the SBSP approach in terms of making more risk-averse energy biddings and attracting more customers in the competitive market. The results show that although the aggregator offers the same prices in both CVaR and VaR approaches, the average of regret is lower in the VaR approach.fi=vertaisarvioitu|en=peerReviewed

    Two- stage stochastic operation framework for optimal management of the water- energy- hub

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/166193/1/gtd2bf02716.pd

    Evaluating the Impact of Bilateral Contracts on the Offering Strategy of a Price Maker Wind Power Producer

    Get PDF
    Due to the high penetration of wind power generation in power systems and electricity markets, wind power plants (WPPs) can, in some scenarios, influence the market prices and exercise market power in the day-ahead (DA) market. In order to evaluate the capability of WPPs to directly act as price-maker, this article proposes the strategic offering of a WPP in the DA market by using a bilevel stochastic optimization approach. The primary objective of the proposed model is to maximize the WPP's expected profit by strategically offering in DA market while minimizing the energy deviations in the regulating market. Moreover, the WPP can also sign bilateral contracts with customers to supply their required energy. In the subproblem, the system operator tends to minimize the sum of the total generation costs minus the sum of the total demand benefits. The effect of bilateral contracts on the strategic offering of WPP in the DA market and its impact on the transmission margin are also investigated. Results on real cases show that when the WPP enters into a bilateral contract, it should consider the effect of such contracts on the offering strategy to the DA market. The effects of bilateral contracts on the regulating market are also examined.©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    Aggregators' Optimal Bidding Strategy in Sequential Day-Ahead and Intraday Electricity Spot Markets

    Get PDF
    This paper proposes a probabilistic optimization method that produces optimal bidding curves to be submitted by an aggregator to the day-ahead electricity market and the intraday market, considering the flexible demand of his customers (based in time dependent resources such as batteries and shiftable demand) and taking into account the possible imbalance costs as well as the uncertainty of forecasts (market prices, demand, and renewable energy sources (RES) generation). The optimization strategy aims to minimize the total cost of the traded energy over a whole day, taking into account the intertemporal constraints. The proposed formulation leads to the solution of different linear optimization problems, following the natural temporal sequence of electricity spot markets. Intertemporal constraints regarding time dependent resources are fulfilled through a scheduling process performed after the day-ahead market clearing. Each of the different problems is of moderate dimension and requires short computation times. The benefits of the proposed strategy are assessed comparing the payments done by an aggregator over a sample period of one year following different deterministic and probabilistic strategies. Results show that probabilistic strategy reports better benefits for aggregators participating in power markets.This work was supported by the European research project IDE4L (Ref. FP7-SMARTCITIES-2013-608860) and the Spanish project RESmart (Ref. ENE2013-48690-C2-1-R)

    Coordinated operation of electric vehicle charging and wind power generation as a virtual power plant: A multi-stage risk constrained approach

    Full text link
    © 2019 Elsevier Ltd As the number of electric vehicles (EVs) is steadily increasing, their aggregation can offer significant storage to improve the electric system operation in many aspects. To this end, a comprehensive stochastic optimization framework is proposed in this paper for the joint operation of a fleet of EVs with a wind power producer (WPP) in a three-settlement pool-based market. An aggregator procures enough energy for the EVs based on their daily driving patterns, and schedules the stored energy to counterbalance WPP fluctuations. Different sources of uncertainty including the market prices and WPP generation are modeled through proper scenarios, and the risk is hedged by adding a risk measure to the formulation. To obtain more accurate results, the battery degradation costs are also included in the problem formulation. A detailed case study is presented based on the Iberian electricity market data as well as the technical information of three different types of EVs. The proposed approach is benchmarked against the disjoint operation of EVs and WPP. Numerical simulations demonstrate that the proposed strategy can effectively benefit EV owners and WPP by reducing the energy costs and increasing the profits

    Investigation on electricity market designs enabling demand response and wind generation

    Get PDF
    Demand Response (DR) comprises some reactions taken by the end-use customers to decrease or shift the electricity consumption in response to a change in the price of electricity or a specified incentive payment over time. Wind energy is one of the renewable energies which has been increasingly used throughout the world. The intermittency and volatility of renewable energies, wind energy in particular, pose several challenges to Independent System Operators (ISOs), paving the way to an increasing interest on Demand Response Programs (DRPs) to cope with those challenges. Hence, this thesis addresses various electricity market designs enabling DR and Renewable Energy Systems (RESs) simultaneously. Various types of DRPs are developed in this thesis in a market environment, including Incentive-Based DR Programs (IBDRPs), Time-Based Rate DR Programs (TBRDRPs) and combinational DR programs on wind power integration. The uncertainties of wind power generation are considered through a two-stage Stochastic Programming (SP) model. DRPs are prioritized according to the ISO’s economic, technical, and environmental needs by means of the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method. The impacts of DRPs on price elasticity and customer benefit function are addressed, including the sensitivities of both DR parameters and wind power scenarios. Finally, a two-stage stochastic model is applied to solve the problem in a mixed-integer linear programming (MILP) approach. The proposed model is applied to a modified IEEE test system to demonstrate the effect of DR in the reduction of operation cost.A Resposta Dinâmica dos Consumidores (DR) compreende algumas reações tomadas por estes para reduzir ou adiar o consumo de eletricidade, em resposta a uma mudança no preço da eletricidade, ou a um pagamento/incentivo específico. A energia eólica é uma das energias renováveis que tem sido cada vez mais utilizada em todo o mundo. A intermitência e a volatilidade das energias renováveis, em particular da energia eólica, acarretam vários desafios para os Operadores de Sistema (ISOs), abrindo caminho para um interesse crescente nos Programas de Resposta Dinâmica dos Consumidores (DRPs) para lidar com esses desafios. Assim, esta tese aborda os mercados de eletricidade com DR e sistemas de energia renovável (RES) simultaneamente. Vários tipos de DRPs são desenvolvidos nesta tese em ambiente de mercado, incluindo Programas de DR baseados em incentivos (IBDRPs), taxas baseadas no tempo (TBRDRPs) e programas combinados (TBRDRPs) na integração de energia eólica. As incertezas associadas à geração eólica são consideradas através de um modelo de programação estocástica (SP) de dois estágios. Os DRPs são priorizados de acordo com as necessidades económicas, técnicas e ambientais do ISO por meio da técnica para ordem de preferência por similaridade com a solução ideal (TOPSIS). Os impactes dos DRPs na elasticidade do preço e na função de benefício ao cliente são abordados, incluindo as sensibilidades dos parâmetros de DR e dos cenários de potência eólica. Finalmente, um modelo estocástico de dois estágios é aplicado para resolver o problema numa abordagem de programação linear inteira mista (MILP). O modelo proposto é testado num sistema IEEE modificado para demonstrar o efeito da DR na redução do custo de operação

    Stochastic Dual Dynamic Programming for Operation of DER Aggregators Under Multi-Dimensional Uncertainty

    Get PDF
    The operation of aggregators of distributed energy resources (DER) is highly complex, since it entails the optimal coordination of a diverse portfolio of DER under multiple sources of uncertainty. The large number of possible stochastic realizations that arise, can lead to complex operational models that become problematic in real-time market environments. Previous stochastic programming approaches resort to two-stage uncertainty models and scenario reduction techniques to preserve the tractability of the problem. However, two-stage models cannot fully capture the evolution of uncertain processes and the a priori scenario selection can lead to suboptimal decisions. In this context, this paper develops a novel stochastic dual dynamic programming (SDDP) approach which does not require discretization of either the state space or the uncertain variables and can be efficiently applied to a multi-stage uncertainty model. Temporal dependencies of the uncertain variables as well as dependencies among different uncertain variables can be captured through the integration of any linear multidimensional stochastic model, and it is showcased for a p-order vector autoregressive (VAR) model. The proposed approach is compared against a traditional scenario-tree-based approach through a Monte-Carlo validation process, and is demonstrated to achieve a better trade-off between solution efficiency and computational effort
    corecore